CRCPD Publication E-16-2

NATIONWIDE EVALUATION OF X-RAY TRENDS (NEXT)

TABULATION AND GRAPHICAL SUMMARY OF THE 2008-2009 CARDIAC CATHETERIZATION SURVEY

June 2016

Published by Conference of Radiation Control Program Directors, Inc. www.crcpd.org This page was intentionally left blank.

This publication was supported in part by grant number FDA-U-000005 through a cooperative agreement with the U.S. Food and Drug Administration This document was prepared by USFDA staff in association with a (USFDA). working group of the Conference of Radiation Control Program Directors, Inc. (CRCPD) and accepted by the CRCPD Board of Directors for publication. The information contained in this document is for guidance. The implementation and use of the information and recommendations contained in this document are at the discretion of the user. The implications from the use of this document are solely the responsibility of the user. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by CRCPD or any federal agency supporting the work contained in this document. The contents contained herein, however, may not necessarily represent the views of the entire membership of the CRCPD or any federal agency supporting the work contained in this document.

NATIONWIDE EVALUATION OF X-RAY TRENDS (NEXT)

TABULATION AND GRAPHICAL SUMMARY OF THE 2008-2009 CARDIAC CATHETERIZATION SURVEY

Prepared by Mike C. Hilohi and David C. Spelic

Center for Devices and Radiological Health (CDRH) U.S. Food and Drug Administration (USFDA)

in association with

Conference of Radiation Control Program Directors, Inc. (CRCPD) Healing Arts Council, H-4 Committee on Nationwide Evaluation of X-ray Trends (NEXT)

and

American College of Radiology

CRCPD H-4 Committee Members (2008)

Warren Freier, Chair (ND) Aaron Gantt (SC) George Eicholtz, ID John Neal (NE) Mary Ann Spohrer (IL)

Professional Liaisons

Stephen Balter (Columbia University Presbyterian Hospital)

Federal Liaisons

David Spelic, CDRH Donald Miller, CDRH Mike Hilohi, CDRH

June 2016

Published by Office of Executive Director Conference of Radiation Control Program Directors, Inc. 1030 Burlington Lane, Suite 4B Frankfort, KY 40601 www.crcpd.org

FOREWORD

The Conference of Radiation Control Program Directors, Inc., (CRCPD) is an organization made up of the radiation control programs in each of the 50 states, the District of Columbia, and Puerto Rico, and of individuals, regardless of employer affiliation, with an interest in radiation protection. The primary purpose and goal of CRCPD is to assist its members in their efforts to protect the public, radiation workers, and patients from unnecessary radiation exposure. CRCPD also provides a forum for centralized communication on radiation protection matters between the states and the federal government, and between the individual states.

One method of providing assistance to the states, as well as to other interested parties, is through technical and administrative publications. Most technical publications of CRCPD are written by various committees, task forces or special working groups. Most administrative publications are written by staff of the Office of Executive Director (OED).

CRCPD's mission is "to promote consistency in addressing and resolving radiation protection issues, to encourage high standards of quality in radiation protection programs, and to provide leadership in radiation safety and education."

This publication, *Nationwide Evaluation of X-ray Trends (NEXT) Tabulation and Graphical Summary of the 2008-2009 Cardiac Catheterization Survey*, is the release of data for informational use.

Jared W. Thompson Chairperson, Conference of Radiation Control Program Directors, Inc.

PREFACE

The Conference of Radiation Control Program Directors (CRCPD) collaborates with the U.S. Food and Drug Administration (USFDA) in a unique federal-state partnership to characterize the radiation doses patients receive from diagnostic x-ray procedures, and to document the state of such practice. Each one to two years, the Nationwide Evaluation of X-ray Trends (NEXT) survey program selects a particular radiological examination for study and captures radiation exposure data from a nationally representative sample of clinical facilities in the United States. NEXT was initiated in 1972 at the request of state programs that were eager for a national picture of the state of practice. Since then, NEXT has documented trends associated with:

- chest, abdomen, lumbosacral spine, dental, and pediatric chest radiography;
- fluoroscopy; and
- computed tomography.

The CRCPD publishes statistical summaries of each survey. They can be accessed at <u>http://www.crcpd.org/Pubs/NEXT.aspx</u>. Further information on NEXT is available at <u>http://www.fda.gov/radiation-</u> emittingproducts/radiationsafety/nationwideevaluationofxraytrendsnext/default.htm.

Warren Freier R.T.

Warren Freier, Chairperson Committee on Nationwide Evaluation Trends X-rays

ACKNOWLEDGMENTS

We are very grateful to Doctor Stephen Balter of Columbia University Presbyterian Hospital for his valuable collaboration during the preparation of this survey. We are also grateful to Doctor Charles Chambers of the Society for Cardiovascular Angiography and Intervention (SCAI) for assisting with preparation of the Clinical Case Log component of this survey.

We thank Doctor Michael Ferguson and Roland Greenblatt of the National Naval Medical Center (now the Walter Reed National Military Medical Center) for allowing USFDA staff access to their fluoroscopic equipment during survey preparation.

We acknowledge the staff of these institutions for assisting with the training of NEXT surveyors:

- Walter Reed Medical Center, Bethesda, Maryland;
- Shady Grove Adventist Hospital, Gaithersburg, Maryland; and
- Suburban Hospital, Bethesda, Maryland.

We also thank Rick Cless, Siemens Medical Solutions, Inc., for providing classroom instruction during the NEXT training courses.

Finally, special thanks to Doctor David Spelic and Doctor Donald Miller for their help with the revision of this document and for sharing their valuable expertise in fluoroscopy.

TABLE OF CONTENTS

FOREWORD	v
PREFACE	/i
ACKNOWLEDGMENTSv	ii
ABSTRACTxxx	ci
ACRONYMS AND ABBREVIATIONS xxx	ii
INTRODUCTION	1
SURVEY SITE SELECTION	1
Table 1. State radiological health programs participating in gathering data SURVEY COMPONENTS	
WORKSHEET FOR DATA COLLECTION BY A TRAINED NEXT SURVEYOR	2
FACILITY QUESTIONNAIRE COMPLETED BY FACILITY	3
CLINICAL PROCEDURE DATA FROM FOR SITES TO RECORD DATA REGARDING CLINCIAL CASE	
PERFORMED	3
SITE VISIT BY NEXT SURVEYOR	
CLINICAL PROCEDURE DATA	4
DOSIMETRY AND IMAGE QUALITY EVALUATION	5
Figure 1. The CDRH fluoroscopic dosimetry phantom, providing x-ray attenuation equivalent to a typical adult patient having an abdomen anterior/posterior (A/P) dimension of 21.5 cm.	5
Figure 2. Test tool used to evaluate image quality for the 2008-2009 NEXT survey	6
SUMMARY OF FINDINGS	6
SURVEY DATA FINDINGS	6
STATISTICAL SUMMARY	7
Table 2. Clinical technique factors and air kerma rate for fluoroscopic and cine modes used during routine cardiac catheterization procedures.	7
NARRATIVE SUMMARY OF SURVEY RESULTS	
Table 3. Image quality scores using test object shown in Figure 2 of this report SUMMARY OF GENERAL PRACTICE IN THE UNITED STATES: CARDIAC FLUOROSCOPY ILLUSTRATIONS	9
Table 4. Summary of statistics for cardiac catheterization in the United States	
REFERENCES	
APPENDICES	
APPENDIX A - DATA FROM THE SURVEYOR WORKSHEET	
MANUFACTURER OF SURVEYED FLUOROSCOPIC UNIT 14	4

14
14 15
15
1 -
15 16
16
16
17
17
17 18
18
18
19 19
19 19
20
21
21
21 G
22
22
22
23
23
23
24
24
24 25

AVAILABILITY OF CUMULATIVE AIR KERMA DISPLAY AT FLUOROSCOPY UNIT CONTROL
CONSOLE
Table A – 11. Frequency distribution for air kerma displayed at fluoroscopic system control console. 25
Figure A – 11. Percent displaying air kerma at fluoroscopic system control console 25
DISPLAY OF CUMULATIVE FLUOROSCOPY TIME AT FLUOROSCOPIST'S WORKING LOCATION 26
Table A - 12. Frequency distribution for irradiation time displayed at fluoroscopist's working location
Figure A- 12. Percent displaying irradiation time at fluoroscopist's working location 26
AVAILABILITY OF DISPLAY FOR CUMULATIVE FLUOROSCOPY TIME AT FLUOROSCOPY UNIT
CONTROL CONSOLE
Table A – 13. Frequency distribution for cumulative fluoroscopy time displayed at unit control console
Figure A – 13. Percent displaying cumulative fluoroscopy time at unit control console 27 YEAR OF MOST RECENT DOSE DISPLAY EQUIPMENT CALIBRATION
Table A – 14. Frequency distribution for year of most recent dose display equipment calibration performed on the fluoroscopy equipment
Figure A $-$ 14. Year of most recent dose display equipment calibration performed on the
fluoroscopy equipment per number of hospitals
AVAILABILITY OF PATIENT RADIATION DOSE IN PROCEDURE LOGBOOK
Table A - 15. Frequency distribution for patient dose indicators collected in procedure
logbook
Figure A - 15. Percent with patient dose indicators available in procedure logbook
FORMAT OF PATIENT RADIATION DOSE LOGBOOK
Table A – 16. Frequency distribution for procedure logbook by type of format
Figure A – 16. Percent of procedure logbook types of format
CUMULATIVE KERMA-AREA PRODUCT (KAP) RECORDED IN PATIENT RADIATION DOSE
LOGBOOK
Table A – 17. Frequency distribution for cumulative KAP recorded in the patient radiation
dose/procedure logbook
Figure A – 17. Percent recording cumulative KAP in the patient radiation dose/procedure
logbook
CUMULATIVE AIR KERMA RECORDED IN PATIENT RADIATION DOSE LOGBOOK
Table A – 18. Frequency distribution for cumulative air kerma recorded in the patient
radiation dose/procedure logbook
Figure A – 18. Percent recording cumulative air kerma in the patient radiation
dose/procedure logbook
Table A – 19. Frequency distribution for cumulative irradiation time recorded in the patient radiation dose/procedure logbook
Figure A – 19. Percent recording cumulative irradiation time in the patient radiation
dose/procedure logbook
FREQUENCY OF DOSE INDICATOR(S) RECORDED IN INDIVIDUAL PATIENT FILE OR REPORT 34

Table A- 20. Frequency distribution for patient dose indicators collected in individual
patient file or report
Figure A- 20. Percent collecting patient dose indicators in individual patient file or
report
FORMAT OF DOSE COLLECTION IN INDIVIDUAL PATIENT FILES OR REPORTS
Table A – 21. Frequency distribution for type of format of dose collection in individual
patient file or report
Figure A – 21. Percent of format of dose collection in individual patient file or report 35 RECORDING OF CUMULATIVE AIR KERMA AREA-PRODUCT (KAP) INTO PATIENT
FILE/REPORT
Table A - 22. Frequency distribution for cumulative KAP values recorded in patient file or
report
Figure A - 22. Percent recording cumulative KAP values in patient file or report
RECORDING OF CUMULATIVE AIR KERMA INTO PATIENT FILE OR REPORT
Table A – 23. Frequency distribution for cumulative air kerma recorded in patient file or
report
Figure A – 23. Percent recording cumulative air kerma in patient file or report
RECORDING OF CUMULATIVE IRRADIATION TIME IN PATIENT FILE OR REPORT
Table A – 24. Frequency distribution for cumulative irradiation time recorded in patient file
or report
Figure A – 24. Percent recording cumulative irradiation time in patient file or report 38
ANNUAL FLUOROSCOPIC PROCEDURE WORKLOAD FOR SURVEYED FLUOROSCOPY UNIT
(ADULT PROCEDURES)
Table A – 25. Descriptive statistics for fluoroscopic unit annual workload (adult
procedures)
Table A – 26. Frequency distribution for range of fluoroscopic unit annual workload (adult
procedures)
Figure A – 25. Fluoroscopic unit annual workload range for adult procedures per number
of hospitals 40
of hospitals
FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)
 FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)
FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)
 FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)
 FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)
FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)

Figure A – 27. Source-to-image distance (SID) ranges as measured by the surveyor (in centimeters) per number of hospitals.	45
DIFFERENCE BETWEEN DISPLAYED AND MEASURED SOURCE-TO-IMAGE DISTANCE (SID)	. 45
(ABSOLUTE VALUES)	16
	. 40
Table A- 31. Descriptive statistics for difference between displayed and measured	10
source-to-image distance (absolute value) in centimeters	. 46
Table A- 32. Range of difference between displayed and measured source-to-image	40
distance (absolute value) in centimeters.	. 46
Figure A – 28. Range of difference between displayed and measured source-to-image	47
distance (absolute value) in centimeters per number of hospitals.	
CLINICAL SETTING FOR FLUOROSCOPIC FIELD-OF-VIEW (FOV) ON SURVEYED FLUOROSCOP	
UNIT AS CONFIGURED FOR A TYPICAL ADULT PATIENT	. 48
Table A – 33. Descriptive statistics for displayed field-of-view (FOV) as configured for	
typical adult patient (in centimeters)	. 48
Table A – 34. Frequency distribution of ranges of displayed field-of-view (FOV) as	
configured for typical adult patient (in centimeters)	. 48
Figure A – 29. Ranges of displayed field-of-view (FOV) as configured for typical adult	
patient (in centimeters) per number of hospitals	
MEASURED FIELD-OF-VIEW	. 50
Table A - 35. Descriptive statistics for measured field-of-view (FOV) (in centimeters)	. 50
Table A - 36. Frequency distribution of measured field-of-view (FOV) ranges (in	
centimeters)	. 50
Figure A - 30. Measured field-of-view (FOV) ranges (in centimeters) per number of	
hospitals	. 51
ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN MEASURED AND DISPLAYED	
FIELD-OF-VIEW (FOV)	. 52
Table A - 37. Descriptive statistics for difference between measured and displayed field-	of-
view FOV in centimeters (absolute value).	
Table A - 38. Frequency distribution for ranges of difference between measured and	
displayed field-of-view FOV in centimeters (absolute value).	. 52
Figure A - 31. Ranges of difference between measured and displayed field-of-view FOV i	
centimeters (absolute value) per number of hospitals	. 53
MOST USED FLUOROSCOPY PULSE FREQUENCY	
Table A – 39. Frequency distribution for most used fluoroscopy pulse frequency	
(pulses/second).	. 54
Figure A – 32. Percent of most used fluoroscopy pulse frequency (pulses/second)	
MOST USED CINERADIOGRAPHY FRAME RATE	
Table A - 40. Frequency distribution of most used cineradiography frame rates	
(frames/second).	55
Figure A – 33. Percent of most used cineradiography frame rates (frames/second)	
MEASURED EXPOSURE RATE IN FLUOROSCOPY MODE AS MEASURED BY THE SURVEYOR	
USING A PATIENT-REPRESENTATIVE PHANTOM	56
	. 50

Table A- 41. Descriptive statistics for exposure rate in fluoroscopy mode measured using
NEXT phantom
Table A- 42. Frequency distribution for range of exposure rate in fluoroscopy mode
measured using NEXT phantom
Figure A - 34. Range of exposure rate in fluoroscopy mode using NEXT phantom per
number of hospitals
Table A- 43. Descriptive statistics for exposure rate in cine mode measured using the NEXTphantom.58
Table A- 44. Frequency distribution for range of exposure rate in cine mode measuredusing the NEXT phantom.58
Figure A - 35. Range of exposure rate in cine mode measured using the NEXT phantom per number of hospitals
X-RAY TUBE KILO-VOLTAGE (kVp) OBSERVED FOR THE MOST FREQUENTLY USED
FLUOROSCOPY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO
ADDITIONAL ATTENUATOR)
Table A - 45. Descriptive statistics for kVp observed for the most frequently used
fluoroscopy mode measured with only the NEXT phantom.
Table A - 46. Frequency distribution for range of kVp observed for the most frequently
used fluoroscopy mode measured with only the NEXT phantom.
Figure A - 36. Range of kVp observed for the most frequently used fluoroscopy mode
measured with only the NEXT phantom per number of hospitals.
X-RAY TUBE KILOVOLTAGE (kVp) IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT
FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)
Table A – 47. Descriptive statistics for kVp used in cine mode measured using only the
NEXT phantom
Table A – 48. Frequency distribution for range of kVp used in cine mode measured using
only the NEXT phantom
Figure A – 37. Range of kVp used in cine mode measured using only the NEXT phantom per
number of hospitals
FLUOROSCOPIC TUBE CURRENT (mA) FOR THE MOST FREQUENTLY USED FLUOROSCOPY
MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL
ATTENUATOR)
Table A - 49. Descriptive statistics for current used for the most frequently used
fluoroscopy mode measured with NEXT phantom.
Table A - 50. Frequency distribution for range of current used for the most frequently used
fluoroscopy mode measured with NEXT phantom
Figure A - 38. Range of current used for the most frequently used fluoroscopy mode
measured with NEXT phantom per number of hospitals
CURRENT IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT FLUOROSCOPY
PHANTOM (NO ADDITIONAL ATTENUATOR)
Table A – 51. Descriptive statistics for current used in cine mode measured using only the
NEXT phantom

Table A – 52. Frequency distribution for range of current used in cine mode measured
using only the NEXT phantom
Figure A – 39. Range of current used in cine mode measured using only the NEXT phantom
per number of hospitals
EXPOSURE RATE FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED WITH
NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM
Table A – 53. Descriptive statistics for exposure rate for fluoroscopy mode measured using
the NEXT phantom and 0.8 mm copper68
Table A – 54. Frequency distribution for range of exposure rate for fluoroscopy mode
measured using the NEXT phantom and 0.8 mm copper
Figure A - 40. Range of exposure rate for fluoroscopy mode measured using the NEXT
phantom and 0.8 mm copper69
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND
0.8 mm COPPER (Cu) IN THE BEAM 70
Table A - 55. Descriptive statistics for exposure rate in cine mode measured with the NEXT
phantom and 0.8 mm copper70
Table A – 56. Frequency distribution for range of exposure rate in cine mode measured
with the NEXT phantom and 0.8 mm copper70
Figure A - 41. Range of exposure rate in cine mode measured with the NEXT phantom and
0.8 mm copper per number of hospitals71
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE READING WITH THE NEXT PHANTOM
AND 0.8 mm COPPER (Cu) IN THE BEAM
Table A – 58. Descriptive statistics for kVp in most used fluoroscopy mode reading with
NEXT phantom and 0.8 mm copper 72
Table A – 58. Frequency distribution for range of kVp in most used fluoroscopy mode
reading with NEXT phantom and 0.8 mm copper72
Figure A – 42. Range of kVp in most used fluoroscopy mode reading with NEXT phantom
and 0.8 mm copper per number of hospitals73
VOLTAGE IN CINEANGIOGRAPHY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm
COPPER (Cu) IN THE BEAM
Table A – 59. Descriptive statistics kVp in cine mode reading with NEXT phantom and 0.8
mm copper
Table A – 60. Frequency distribution for range of kVp in cine mode reading with NEXT
phantom and 0.8 mm copper74
Figure A – 43. Range of kVp in cine mode reading with NEXT phantom and 0.8 mm copper
per number of hospitals
CURRENT IN THE MOST USED FLUOROSCOPY MODE READING WITH THE NEXT PHANTOM
AND 0.8 mm COPPER (Cu) IN THE BEAM
Table A – 61. Descriptive statistics for current in fluoroscopy mode reading with NEXT
phantom and 0.8 mm copper76
Table A – 62. Frequency distribution for range of current in fluoroscopy mode reading with
NEXT phantom and 0.8 mm copper

Figure A - 44. Range of current in fluoroscopy mode reading with NEXT phantom and 0.8
mm copper per number of hospitals
COPPER (Cu) IN THE BEAM
Table A – 63. Descriptive statistics for current in cine mode reading with NEXT phantom
and 0.8 mm copper
Table A – 64. Frequency distribution for range of current in cine mode reading with NEXT
phantom and 0.8 mm copper78
Figure A – 45. Range of current in cine mode reading with NEXT phantom and 0.8 mm
copper per number of hospitals
EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT
PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM
Table A – 65. Descriptive statistics for exposure rate in fluoroscopy mode measured with
NEXT phantom and 1.5 mm copper
Table A – 66. Frequency distribution for range of exposure rate in fluoroscopy mode
measured with NEXT phantom and 1.5 mm copper
Figure A – 46. Range of exposure rate in fluoroscopy mode measured with NEXT phantom
and 1.5 mm copper per number of hospitals
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND
1.5 mm COPPER (Cu) IN THE BEAM
Table A $-$ 67. Descriptive statistics for exposure rate in cine mode measured with NEXT
phantom and 1.5 mm copper
Table A – 68. Frequency distribution for range of exposure rate in cine mode measured
with NEXT phantom and 1.5 mm copper
Figure A $-$ 47. Range of exposure rate in cine mode measured with NEXT phantom and 1.5
mm copper per number of hospitals
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 1.5 mm COPPER (Cu) IN THE BEAM
Table A - 69. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT
phantom and 1.5 mm copper
Table A - 70. Frequency distribution for range of voltage in fluoroscopy mode measured
with NEXT phantom and 1.5 mm copper
Figure A – 48. Range of voltage in fluoroscopy mode measured with NEXT phantom and
1.5 mm copper per number of hospitals85
VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm
COPPER (Cu) IN THE BEAM
Table A – 71. Descriptive statistics for voltage in cine mode measured with NEXT phantom
and 1.5 mm copper
Table A – 72. Frequency distribution for range of voltage in cine mode measured with
NEXT phantom and 1.5 mm copper
Figure A – 49. Range of voltage in cine mode measured with NEXT phantom and 1.5 mm
copper per number of hospitals

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 1.5 mm COPPER (Cu) IN THE BEAM
Table A – 73. Descriptive statistics for current in fluoroscopy mode measured with NEXT
phantom and 1.5 mm copper
Table A – 74. Frequency distribution for range of current in fluoroscopy mode measured
with NEXT phantom and 1.5 mm copper 88
Figure A - 50. Range of current in fluoroscopy mode measured with NEXT phantom and 1.5
mm copper per number of hospitals
CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm
COPPER (Cu) IN THE BEAM
Table A - 75. Descriptive statistics for current in cine mode measured with NEXT phantom
and 1.5 mm copper
Table A – 76. Frequency distribution for range of current in cine mode measured with
NEXT phantom and 1.5 mm copper
Figure A – 51. Range of current in cine mode measured with NEXT phantom and 1.5 mm
copper per number of hospitals
EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT
PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM
Table A – 77. Descriptive statistics for exposure in fluoroscopy mode measured with NEXT
phantom and 2.3 mm copper
Table A – 78. Frequency distribution for range of exposure in fluoroscopy mode measured
with NEXT phantom and 2.3 mm copper
Figure A $-$ 52. Range of exposure in fluoroscopy mode measured with NEXT phantom and
2.3 mm copper per number of hospitals
2.3 mm COPPER (Cu) IN THE BEAM
Table A - 79. Descriptive statistics for exposure rate in cine mode with NEXT phantom and
2.3 mm copper
Table A - 80. Frequency distribution for range of exposure rate in cine mode with NEXT
phantom and 2.3 mm copper
copper per number of hospitals
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 2.3 mm COPPER (Cu) IN THE BEAM
Table A – 81. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT
phantom and 2.3 mm copper
with NEXT phantom and 2.3 mm copper
Figure A – 54. Range of voltage in fluoroscopy mode measured with NEXT phantom and
2.3 mm copper per number of hospitals
VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm
COPPER (Cu) IN THE BEAM

Table A – 83. Descriptive statistics for voltage in cineangiography mode measured with NEXT phantom and 2.3 mm copper
Table A – 84. Frequency distribution for range of voltage in cineangiography mode
measured with NEXT phantom and 2.3 mm copper
Figure A – 55. Range of voltage in cineangiography mode measured with NEXT phantom
and 2.3 mm copper per number of hospitals
CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 2.3 mm COPPER (Cu) IN THE BEAM
Table A – 85. Descriptive statistics for current in fluoroscopy mode measured with NEXT
phantom and 2.3 mm copper
Table A – 86. Frequency distribution for range of current in fluoroscopy mode measured
with NEXT phantom and 2.3 mm copper
Figure A – 56. Range of current in fluoroscopy mode measured with NEXT phantom and
2.3 mm copper per number of hospitals101
CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm
COPPER (Cu) IN THE BEAM 102
Table A – 87. Descriptive statistics for current in cine mode measured with NEXT phantom
and 2.3 mm copper 102
Table A – 88. Frequency distribution for current in cine mode measured with NEXT
phantom and 2.3 mm copper102
Figure A - 57. Range of current in cine mode measured with NEXT phantom and 2.3 mm
copper per number of hospitals103
EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT
PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM 104
Table A – 89. Descriptive statistics for exposure rate in fluoroscopy mode measured with
NEXT phantom and 3.1 mm copper 104
Table A – 90. Frequency distribution for range of exposure rate in fluoroscopy mode
measured with NEXT phantom and 3.1 mm copper 104
Figure A – 58. Range of exposure in fluoroscopy mode measured with NEXT phantom and
3.1 mm copper per number of hospitals105
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND
3.1 mm COPPER (Cu) IN THE BEAM 106
Table A – 91. Descriptive statistics for exposure rate in cine mode measured with NEXT
phantom and 3.1 mm copper106
Table A – 92. Frequency distribution for range of exposure rate in cine mode measured
with NEXT phantom and 3.1 mm copper 106
Figure A – 59. Range of exposure rate in cine mode measured with NEXT phantom and
3.1 mm copper per number of hospitals
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 3.1 mm COPPER (Cu) IN THE BEAM 108
Table A – 93. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT
phantom and 3.1 mm copper108

Table A – 94. Frequency distribution for range of voltage in fluoroscopy mode measured
with NEXT phantom and 3.1 mm copper 108 Figure A – 60. Range of voltage in fluoroscopy mode measured with NEXT phantom and
3.1 mm copper per number of hospitals
VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm
COPPER (Cu) IN THE BEAM
Table A – 95. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT
phantom and 3.1 mm copper
Table A – 96. Frequency distribution for range of voltage in fluoroscopy mode measured
with NEXT phantom and 3.1 mm copper
Figure A – 61. Range of voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper per number of hospitals
CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM
AND 3.1 mm COPPER (Cu) IN THE BEAM
Table A – 97. Descriptive statistics for current in fluoroscopy mode measured with NEXT
phantom and 3.1 mm copper
Table A – 98. Frequency distribution for range of current in fluoroscopy mode measured
with NEXT phantom and 3.1 mm copper
Figure A - 62. Range of current in fluoroscopy mode measured with NEXT phantom and 3.1
mm copper per number of hospitals
COPPER (Cu)
Table A – 99. Descriptive statistics for current in cine mode measured with NEXT phantom
and 3.1 mm copper
Table A – 100. Frequency distribution for range of current in cine mode measured with
NEXT phantom and 3.1 mm copper
Figure A - 63. Range of current in cine mode measured with NEXT phantom and 3.1 mm
copper per number of hospitals
PHANTOM, 3.1 MM COPPER (CU) AND 2.0 mm LEAD (PB) IN THE BEAM 116
Table A – 101. Descriptive statistics for exposure rate in fluoroscopy mode measured with
NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet
Table A – 102. Frequency distribution for range of exposure rate in fluoroscopy mode
measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet 116
Figure A $- 64$. Range of exposure rate in fluoroscopy mode measured with NEXT phantom,
3.1 mm copper and one 2.0 mm lead sheet per number of hospitals
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1
mm COPPER (Cu), and 2.0 mm LEAD (Pb) IN THE BEAM 118
Table A – 103. Descriptive statistics for exposure rate in cineangiography mode measured
with NEXT phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet
Table A – 104. Frequency distribution for range of exposure rate in cineangiography mode
measured with NEXT phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet 118

Figure A - 65. Range of exposure rate in cineangiography mode measured with NEXT
phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet per number of hospitals
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM,
3.1 mm COPPER (Cu) and 2.0 mm LEAD (Pb) IN THE BEAM
Table A - 105. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT
phantom, 3.1 mm copper and one 2.0 mm lead sheet
Table A - 106. Frequency distribution for range of voltage in fluoroscopy mode measured
with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet
Figure A - 66. Range of voltage in fluoroscopy mode measured with NEXT phantom, 3.1 mm
copper and one 2.0 mm lead sheet per number of hospitals
VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm
COPPER (Cu) AND 2.0 MM LEAD (Pb) IN THE BEAM 122
Table A - 107. Descriptive statistics for voltage in cine mode measured with NEXT phantom,
3.1 mm copper and one 2.0 mm lead sheet
Table A - 108. Frequency distribution for range of voltage in cine mode measured with
NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet
Figure A - 67. Range of voltage in cine mode measured with NEXT phantom, 3.1 mm
copper and one 2.0 mm lead sheet per number of hospitals 123 CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM,
3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM
Table A – 109. Descriptive statistics for current in fluoroscopy mode measured with NEXT
phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet
Table A – 110. Frequency distribution for range of current in fluoroscopy mode measured
with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet
mm copper thickness and one 2.0 mm lead sheet per number of hospitals
X-RAY TUBE CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM,
3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM
Table A – 111. Descriptive statistics for current in cine mode measured with NEXT
phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet
Table A – 112. Frequency distribution for range of current in cine mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet
Figure A - 69. Range of current in cine mode measured with NEXT phantom, 3.1 mm
copper thickness and one 2.0 mm lead sheet per number of hospitals
NUMBER OF VISIBLE MESHES IN FLUOROSCOPY MODE
Table A – 113. Descriptive statistics for number of visible meshes in fluoroscopy mode. 128
Table A $-$ 113. Descriptive statistics for number of visible meshes in hubroscopy mode. 128 Table A $-$ 114. Frequency distribution for number of visible meshes in fluoroscopy
mode
Figure A – 70. Number of visible meshes in fluoroscopy mode per number of hospitals. 129
NUMBER OF VISIBLE HOLES IN FLUOROSCOPY MODE
Table A – 115. Descriptive statistics for number of visible holes in fluoroscopy mode 130

Table A – 116. Frequency distribution for range of number of visible holes in fluoroscopy
mode
Figure A - 71. Number of visible holes in fluoroscopy mode per number of hospitals 131 NUMBER OF VISIBLE MESHES IN CINEANGIOGRAPHY MODE
 Table A – 117. Descriptive statistics for number of visible meshes in cine mode
 Table A – 119. Descriptive statistics for number of visible holes in cine mode
Table A – 121. Descriptive statistics for measured HVL value [(mm aluminum(Al)] 136 Table A – 122. Frequency distribution for range of measured HVL value [(mm aluminum(Al)]
Figure A - 74. Measured HVL value (mm Al) range per number of hospitals
APPENDIX B - DATA FROM FACILITY QUESTIONNAIRE
ANNUAL NUMBER OF INVASIVE PROCEDURES PERFORMED BY THE DEPARTMENT
DIRECTOR
Table B – 1. Descriptive statistics for number of invasive procedures performed annually by the department director
Table B – 2. Frequency distribution for range of number of invasive procedures performed annually by the department director
Figure $B - 1$. Range of number of invasive procedures performed annually by the
department director per number of observations140
PROCEDURES OTHER THAN CARDIAC PERFORMED IN THE DEPARTMENT
Table B – 3. Frequency distribution for procedures other than cardiac performed in the
department
NUMBER OF CARDIOLOGISTS IN THE DEPARTMENT
Table B – 4. Descriptive statistics for number of cardiologists in the department
performing cardiac procedures
department performing cardiac procedures
Figure B – 3. Range of number of cardiologists in the department performing cardiac
procedures per number of observations
NUMBER OF VASCULAR SURGEONS IN THE DEPARTMENT
Table B – 6. Descriptive statistics for number vascular/cardio-thoracic surgeons in the
department144
Table B – 7. Frequency distribution for range number vascular/cardio-thoracic surgeons in
the department
number of observations

NUMBER OF INTERVENTIONAL RADIOLOGISTS IN THE DEPARTMENT	146
Table B – 8. Descriptive statistics for number of interventional radiologists in the	
department	146
Table B – 9. Frequency distribution for number of interventional radiologists in the	
department	146
Figure B – 5. Number of interventional radiologists in the department per number of	
observations	147
NUMBER OF NURSES IN THE DEPARTMENT	148
Table B - 10. Descriptive statistics for number of nurses in the department.	148
Table B - 11. Frequency distribution for range of the number of nurses in the	
department	148
Figure B - 6. Range of number of nurses in the department per number of	
observations	149
OTHER PERSONNEL IN THE DEPARTMENT	150
Table B – 12. Descriptive statistics for number of other personnel in the department	150
Table B – 13. Frequency distribution for number of other personnel in the	
department	150
Figure B – 7. Number of other personnel in the department per number of	
observations	-
NUMBER OF CARDIOVASCULAR TECHNOLOGISTS IN THE DEPARTMENT	152
Table B – 14. Descriptive statistics for number of cardiology/cardiovascular technologis	sts
in the department	152
Table B – 15. Frequency distribution for range of number of cardiology/cardiovascular	
technologists in the department	152
Figure B – 8. Range of number of cardiology/cardiovascular technologists in the	
department per number of observations	
NUMBER OF RADIOLOGIC TECHNOLOGISTS IN THE DEPARTMENT	154
Table B – 16. Descriptive statistics for number of radiologic technologists in the	
department	
Table B – 17. Frequency distribution for range of number of radiologic technologists in	the
department	
Figure $B - 9$. Range of number of radiologic technologists in the department per numb	
of observations.	
NUMBER OF MEDICAL PHYSICISTS EXCLUSIVELY SUPPORTING THE DEPARTMENT	
Table B – 18. Descriptive statistics for number of medical physicists exclusively support	•
the department.	
Table B – 19. Frequency distribution for range of number of medical physicists support	
exclusively the department.	156
Figure B - 10. Percent of facilities with medical physicists exclusively supporting the	4
NUMBER OF MEDICAL PHYSICISTS IN THE FACILITY	128
Table $B - 20$. Descriptive statistics for number of medical physicists providing support	4 = 0
throughout the facility	158

Table B – 21. Frequency distribution for number of medical physicists providing support
throughout the facility
Figure B - 11. Number of medical physicists providing support throughout the facility
per number of observations
Table B – 22. Descriptive statistics for number of medical physicists on contract
Table $B - 23$. Frequency distribution for number of medical physicists on contract 160
Figure B – 12. Number of medical physicists on contract per number of observations 161
OTHER MEDICAL PHYSICISTS ON STAFF
Table B – 24. Descriptive statistics for other medical physicists on staff. 162
Table B – 25. Frequency distribution for other medical physicists on staff
Figure B – 13. Percent of facilities with other medical physicists on staff
RADIATION SAFETY DUTIES PERFORMED BY MEDICAL PHYSICIST
Table B – 26. Frequency distribution for medical physicist performing radiation safety
duties
Figure B – 14. Percent of medical physicist performing radiation safety duties
RADIATION SAFETY DUTIES PERFORMED BY RADIATION SAFETY OFFICER
Table B – 27. Frequency distribution for radiation safety officer performing radiation safety
duties
Figure B – 15. Percent of facilities with radiation safety officer performing radiation safety
duties
NUMBER OF ADULT DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE
HOSPITAL ANNUALLY
Table B – 28. Descriptive statistics for annual number of adult DCA procedures performed
at hospital166
Table B – 29. Frequency distribution for range of annual number of adult DCA procedures
performed at hospital166
Figure B - 16. Range of annual number of adult DCA procedures performed at hospital per
number of hospitals
NUMBER OF PEDIATRIC DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE
HOSPITAL ANNUALLY
Table B – 30. Descriptive statistics for annual number of pediatric DCA procedures
performed at hospital
Table B – 31. Frequency distribution for range of annual number of pediatric DCA
procedures performed at hospital 168
Figure B - 17. Range of annual number of pediatric DCA procedures performed at hospital
per number of hospitals 169
FACILITIES PERFORMING DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES ON
HOSPITAL ADULT OUTPATIENTS
Table B – 32. Frequency distribution of facilities performing DCA procedures on hospital
adult outpatients
Figure B – 18. Percent of facilities performing DCA procedures on hospital adult
outpatients 170

ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON
HOSPITAL PEDIATRIC OUTPATIENTS
DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON NON-
HOSPITAL ADULT OUTPATIENTS
Table B – 33. Frequency distribution for DCA procedures performed on non-hospital adult outpatients. 172
Figure B – 19. Percent performing DCA procedures on non-hospital adult outpatients 172
ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON
NON-HOSPITAL PEDIATRIC OUTPATIENTS 173
ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON
HOSPITAL ADULT INPATIENTS
Table B – 34. Frequency distribution for annual DCA procedures performed on hospital
adult inpatients
Figure B – 20. Percent of facilities offering DCA procedures for hospital adult
inpatients
ANNUAL ADULT CARDIAC INVASIVE PROCEDURES PERFORMED AT HOSPITAL
Table B - 35. Descriptive statistics for number of annual adult cardiac invasive procedures
performed at hospital
procedures performed at hospital
Figure B – 21. Range of number of annual adult cardiac invasive procedures performed at
hospital per number of hospitals
ANNUAL CARDIAC INVASIVE PROCEDURES PERFORMED ON PEDIATRIC PATIENT
Table B – 37. Descriptive statistics for number of annual pediatric cardiac invasive
procedures performed at hospital
Table B – 38. Frequency distribution for number of annual pediatric cardiac invasive
procedures performed at hospital 178
Figure B – 22. Percent performing pediatric cardiac invasive procedures at the
hospital
DEPARTMENT FLUOROSCOPY CREDENTIALING PROGRAM
Table B – 39. Frequency distribution for department credentialing program for
fluoroscopy equipment operators
equipment operators
BOARD CERTIFICATION REQUIREMENT
Table B – 40. Frequency distribution for fluoroscopy credentialing program that requires
board certification
Figure B – 24. Percent of fluoroscopy credentialing programs that require board
certification
PROBATIONAL PERIOD OF SUPERVISION
Table B – 41. Frequency distribution for fluoroscopy privileging program that requires
probationary period

Figure B – 25. Percent of fluoroscopy privileging programs that require probationary	
period	
ONE-TIME TRAINING FOR OBTAINING PRIVILEGES FOR FLUOROSCOPY	. 183
Table B – 42. Frequency distribution for fluoroscopy privileging program that requires one-time training.	
Figure B – 26. Percent of fluoroscopy privileging programs that require a one-time training.	
CONTINUING EDUCATION REQUIREMENT FOR MAINTAINING PRIVILEGES IN	. 105
FLUOROSCOPY	184
Table B – 43. Frequency distribution for fluoroscopy privileging program that requires	
continuing education	
Figure B – 27. Percent of fluoroscopy privileging programs that require continuing	. 10 .
education	. 184
FLUOROSCOPY PRIVILEGING PROGRAM INCLUDES IN-HOUSE LECTURES	
Table B – 44. Frequency distribution for fluoroscopy privileging program that encoura	ages
in-house lectures.	-
Figure B - 28. Percent of fluoroscopy privileging programs that encourage in-house	
lectures.	. 185
TOTAL NUMBER OF FLUOROSCOPY SYSTEMS IN THE DEPARTMENT	. 186
Table B – 45. Descriptive statistics for total number of fluoroscopy systems in the	
department	. 186
Table B – 46. Frequency distribution for total number of fluoroscopy systems in the	
department	. 186
Figure B - 29. Total number of fluoroscopy systems in the department per number of	
hospitals	
TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR CARDIAC PROCEDURES	
Table B – 47. Descriptive statistics for number of fluoroscopy systems in the departme	
used for cardiac procedures	. 188
Table B – 48. Frequency distribution for number of fluoroscopy systems in the	
department used for cardiac procedures.	. 188
Figure $B - 30$. Number of fluoroscopy systems in the department used for cardiac	400
proceduresper number of hospitals TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR NON-CARDIAC PROCEDURES	
Table B – 49. Descriptive statistics for number of fluoroscopy systems in the department	
used for non-cardiac procedures.	. 190
Table B – 50. Frequency distribution for number of fluoroscopy systems in the department used for non-cardiac procedures.	100
Figure B – 31. Number of fluoroscopy systems in the department used for non-cardiac	
procedures per number of hospitals	
TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR INVASIVE PROCEDURES	
Table B – 51. Descriptive statistics for number of fluoroscopy systems in the departme	
used for cardiac and non-cardiac invasive procedures	
acea ter caratace and non-caratace medsive procedures initiation initiation initiation	

Table B – 52. Frequency distribution for number of fluoroscopy systems in the	
department used for cardiac and non-cardiac invasive procedures.	192
Figure B – 32. Number of fluoroscopy systems in the department used for cardiac and	
non-cardiac invasive procedures per number of hospitals	193
NUMBER OF DIGITAL-RECEPTOR FLUOROSCOPY SYSTEMS USED FOR CARDIAC	
PROCEDURES	194
Table B – 53. Descriptive statistics for number of flat-panel (digital) image receptor	
fluoroscopy units used for cardiac procedures.	194
Table B – 54. Frequency distribution for number of flat-panel (digital) image receptor	
fluoroscopy units used for cardiac procedures	194
Figure B – 33. Number of flat-panel (digital) image receptor fluoroscopy units used for	
cardiac procedures per number of hospitals.	
NUMBER OF CARDIAC FLUOROSCOPY UNITS WITH COMPUTED TOMOGRAPHY (CT) MODE	OF
OPERATION	196
Table B – 55. Descriptive statistics for number of fluoroscopy systems used for cardiac	
procedures with a CT mode of operation.	196
Table B – 56. Frequency distribution for number of fluoroscopy systems used for cardia	C
procedures with a CT mode of operation	196
Figure B – 34. Percent of fluoroscopy systems used for cardiac procedures with a CT mo	ode
of operation	
NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH DOSE-AREA PRODUCT	
(DAP)/ AIR KERMA-AREA PRODUCT (KAP) DISPLAY	198
Table B – 57. Descriptive statistics for number of fluoroscopy units used for cardiac	
procedures with DAP/KAP display	198
Table B – 58. Frequency distribution for number of fluoroscopy units used for cardiac	
procedures with DAP/KAP display	198
Figure B – 35. Number of fluoroscopy units used for cardiac procedures with DAP/KAP	
display per number of hospitals	199
NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH AIR KERMA (AK)	
DISPLAY	200
Table B – 59. Descriptive statistics for number of fluoroscopy units used for cardiac	
procedures with air kerma display	200
Table B – 60. Frequency distribution for number of fluoroscopy units used for cardiac	
procedures with air kerma display	200
Figure B – 36. Number of fluoroscopy units used for cardiac procedures with air kerma	
display per number of hospitals	
VALUES OF FLUOROSCOPY TIME RECORDED AND KEPT ON RECORD	202
Table B – 61. Frequency distribution for facilities recording values of cumulative	
fluoroscopy time	
Figure B – 37. Percent recording values of cumulative fluoroscopy time	
RECORD OF FLUOROSCOPY TIME USED FOR PATIENT FOLLOW-UP	
RECORD OF FLUOROSCOPY TIME USED FOR INTERNAL REPORTING	203
RECORD OF FLUOROSCOPY TIME USED FOR REPORTING WITH OUTSIDE AGENCY	203

VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD 204
Table B – 62. Frequency distribution for facilities recording values of cumulative KAP 204
Figure B – 38. Percent recording and keeping values of cumulative KAP 204
VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR
PATIENT FOLLOW-UP
Table B – 63. Frequency distribution for recording values of cumulative KAP for patient
follow-up
Figure B – 39. Percent recording values of cumulative KAP for patient follow-up
VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR
INTERNAL REPORTING
Table B – 64. Frequency distribution for recording values of KAP for internal reporting. 206
Figure B - 40. Percent recording values of KAP for internal reporting
VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR
OUTSIDE AGENCY REPORTING
VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD
Table B – 65. Frequency distribution for recording values of air kerma
Figure B – 41. Percent recording values of air kerma
VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR PATIENT FOLLOW-UP 209
Table B – 66. Frequency distribution for recording values of cumulative air kerma for
patient follow-up
Figure B – 42. Percent recording values of cumulative air kerma for patient follow-up 209
VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR INTERNAL REPORTING 210
Table B – 67. Frequency distribution for recording values of cumulative air kerma for
internal reporting
VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR REPORTING TO OUTSIDE
AGENCY
Table B – 68. Frequency distribution for recording values of cumulative air kerma for
reporting to outside agency
Figure B – 44. Percent recording values of cumulative air kerma for reporting to outside
agency
OTHER VALUES RECORDED AND KEPT ON RECORD
OTHER VALUES RECORDED AND KEPT ON RECORD FOR PATIENT FOLLOW-UP
OTHER VALUES RECORDED AND KEPT ON RECORD FOR INTERNAL REPORTING
OTHER VALUES RECORDED AND KEPT ON RECORD FOR OUTSIDE AGENCY REPORTING 212
PROCEDURES IN PLACE TO MINIMIZE DOSE FOR EXTENSIVE IMAGING (ADULT PATIENTS) 213
Table B – 69. Frequency distribution for having procedures in place to minimize dose for
extensive imaging of adult patients
Figure B – 45. Percent having procedures in place to minimize dose for extensive imaging
of adult patients
PROCEDURES IN PLACE TO MINIMIZE DOSE FOR ADULT PATIENTS WITH PREVIOUS
TREATMENT

Table B – 70. Frequency distribution for having procedures in place to minimize radiation dose for adult patients with previous treatment
Figure B $-$ 46. Percent having procedures in place to minimize radiation dose for adult
patients with previous treatment
PROCEDURES IN PLACE TO MINIMIZE DOSE FOR PEDIATRIC PATIENTS
DEPARTMENT PROVIDES INFORMATION ON POSSIBLE RADIATION INJURY
Table B – 71. Frequency distribution for providing information on the possible radiation injury
Figure B – 47. Percent providing information on possible radiation injury
NUMBER OF PATIENTS WITH CONFIRMED RADIATION INJURY DURING PAST THREE
YEARS
Table B – 72. Frequency distribution for number of patients with a confirmed radiationinjury during past 36 months.218
NUMBER OF PATIENTS WITH CONFIRMED RADIATION INJURY DURING PAST THREE
YEARS
Figure B – 48. Percent of patients with a confirmed radiation injury during past 36 months
POST-EXAM PATIENT MONITORING FOR RADIATION INJURY
Table B – 73. Frequency distribution for facility's standard protocol for post-exam patient
monitoring regarding potential for radiation injury
Figure B – 49. Facility's standard protocols for post-exam patient monitoring regarding
potential for radiation injury by percent
DOSE ESTIMATION PERFORMED FOLLOWING RADIATION INJURY
Table B – 74. Frequency distribution for performing radiation dose estimation as part of
diagnosis of a possible radiation injury
possible radiation injury 222
TREATING PHYSICIAN INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION
INJURY
Table B – 75. Frequency distribution for involving treating physician in post-exam patient
care following possible radiation injury
Figure B – 51. Percent involving treating physician in post-exam patient care following
possible radiation injury
NURSE OR PHYSICIAN ASSISTANT INVOLVED IN POST-EXAM PATIENT CARE REGARDING
RADIATION INJURY
Table B – 76. Frequency distribution for involving a nurse or physician assistant in post-
exam patient care following possible radiation injury
Figure B – 52. Percent involving a nurse or physician assistant in post-exam patient care
following possible radiation injury
INJURY
וושטתד

Table B – 77. Frequency distribution for involving a dermatologist in post-exam patient care following possible radiation injury. 225
Figure B – 53. Percent involving a dermatologist in post-exam patient care following
possible radiation injury
PHYSICIAN MEDICAL DIRECTOR INVOLVED IN POST-EXAM PATIENT CARE REGARDING
RADIATION INJURY
Table B – 78. Frequency distribution for involving the physician medical director involvedin post-exam patient care following possible radiation injury
RADIATION SAFETY OFFICER (RSO) INVOLVED IN POST-EXAM PATIENT CARE REGARDING
RADIATION INJURY
Table B – 79. Frequency distribution for involving the RSO in post-exam patient carefollowing possible radiation injury.227
Figure B – 55. Percent involving the RSO in post-exam patient care following possible radiation injury
PATIENT'S PRIMARY PHYSICIAN INVOLVED IN POST-EXAM PATIENT CARE REGARDING
RADIATION INJURY
Table B – 80. Frequency distribution for involving the patient's primary physician in post-
exam patient care following possible radiation injury
Figure B – 56. Percent involving the patient's primary physician in post-exam patient care
following possible radiation injury 228
OTHER PERSONNEL INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION
INJURY
Table B – 81. Frequency distribution for involving other personnel in post-exam patientcare following possible radiation injury.229
Figure B – 57. Percent involving other personnel in post-exam patient care following possible radiation injury
FACILITY RESPONSE TO 2006 JOINT COMMISSION (JC) SENTINEL EVENT REGARDING
CUMULATIVE DOSES EXCEEDING 15 Gy
Table B – 82. Frequency distribution for facility response to Joint Commission's sentinel
event of 2006
Figure B – 58. Type of facility responses to Joint Commission's sentinel event of 2006 by percent
HOW OFTEN PREVENTIVE MAINTENANCE IS PERFORMED ON FLUOROSCOPIC EQUIPMENT
Table B – 83. Frequency distribution for how often routine preventive maintenance is
performed on the fluoroscopic equipment
Figure B – 59. How often routine preventive maintenance is performed on the
fluoroscopic equipment by percent232
HOW OFTEN DOSE-DISPLAY EQUIPMENT IS CALIBRATED
Table B – 84. Frequency distribution for how often dose-display equipment is
calibrated
xxviii

Figure B – 60. How often dose-display equipment is calibrated by percent
WAS EVALUATED AS PART OF THE NEXT SURVEY
Table B – 85. Frequency distribution for how often a medical physicist survey is performed on the fluoroscopy equipment that was evaluated as part of the NEXT survey
Table B – 86. Frequency distribution for who performs the medical physics surveys on the fluoroscopy equipment
percent
APPENDIX C - DATA FROM CLINICAL PROCEDURE FORMS
CLINICAL DATA ON CARDIAC CATHETERIZATION PROCEDURES
SUMMARY OF CLINICAL DATA
Table C – 1. Descriptive statistics and summary of clinical data [time, dose-area product (DAP), air kerma (AK) and cine runs)] sorted by procedure type A, B and C
Table C - 2. Distribution of range of total fluoroscopy time for procedures A, B and C 241Figure C - 1. Distribution of total fluoroscopy time for cardiac catheterization diagnosticprocedures (Procedure A) by percent of observations.242Figure C - 2. Distribution of total fluoroscopy time for coronary intervention procedures(Procedure B) by percent of observations.243
Figure C – 3. Distribution of total fluoroscopy time for combined cardiac diagnostic and coronary intervention procedures (Procedure C) by percent of observations
Table C – 3. Number of digital acquisitions (cine runs) for procedures A, B and C
percent of observations
Table C – 4. KAP values for Procedures A, B and C
Figure C – 8. KAP distribution for coronary intervention procedures (Procedure B) by percent of observations
intervention procedures (Procedure C) by percent of observations

CLINICAL DATA: AIR KERMA VALUES	254
Table C – 5. Air kerma values for procedures A, B and C	254
Figure C - 10. Air kerma distribution for cardiac catheterization diagnostic procedures	
(Procedure A) by percent of observations.	256
Figure C – 11. Air kerma distribution for coronary intervention procedures (Procedure I	B)
by percent of observations	257
Figure C – 12. Distribution of air kerma values for combined cardiac diagnostic and	
coronary intervention procedures (Procedure C) by percent of observations	. 258

ABSTRACT

Spelic, David, U.S. Federal Food and Drug Administration; Conference of Radiation Control Program Directors (CRCPD) H-4 Committee on Nationwide Evaluation of X-ray Trends. *Nationwide Evaluation of X-ray Trends (NEXT) Tabulation and Graphical Summary of 2008-2009 Cardiac Catheterization Survey*, CRCPD Publication #E-16-2, June 2016, pp. 258

This document presents the 2008-2009 cardiac catheterization survey data. The tables and graphs are a summary of the data collected as part of the Nationwide Evaluation of X-ray Trends program.

ACRONYMS AND ABBREVIATIONS

AAPM ACCR	American Association of Physicists in Medicine American College of Chiropractic Radiology
ACR	American College of Radiology
AHA	American Hospital Association
AK	Air kerma
AP	Anterior/posterior
ASD	Atrial septal defects
CDRH	Center for Devices and Radiological Health
CRCPD	Conference of Radiation Control Program Directors
DAP	Dose-area product, also known as air kerma-area product
DCA	Diagnostic coronary arteriograms
FOV	Field-of-view
HVL	Half-value layer
KAP	Air kerma-area product, also known as dose-area product
	(DAP)
NCRP	National Council on Radiation Protection and Measurements
NEXT	Nationwide Evaluation of X-ray Trends
PFO	Patent foramen ovale
SCAI	Society for Cardiovascular Angiography and Interventions
SID	Source-to-image distance
USFDA	U.S. Food and Drug Administration

INTRODUCTION

In the early and mid-2000s, the practice of fluoroscopy for diagnostic and therapeutic procedures experienced rapid growth in both complexity and procedure volumes (Balter, Moses 2007). In response, CRCPD H-4 NEXT Committee and collaborating USFDA staff selected cardiac catheterization to be surveyed in 2008-2009. The NEXT survey program had conducted previous surveys of fluoroscopy (1991 and 1996)¹, but these activities were limited to the routine upper gastrointestinal (GI) examination. Moreover, the surveyed clinical equipment primarily comprised radiographic-fluoroscopic equipment that was seldom used for more complex fluoroscopic imaging procedures. At the time of planning the cardiac catheterization survey there were also limited published data regarding collective exam volumes and population doses from selected invasive fluoroscopic procedures.

Cardiac catheterization was selected for survey based on several factors. Cardiac catheterization is an established, commonly performed procedure, providing high likelihood that clinical facilities identified for survey participation performed this procedure. The general standardized workflow for this clinical procedure permitted survey data collection with minimal complexity. Also, the NEXT dosimetry phantom used during the earlier NEXT surveys of upper GI fluoroscopy was found to be suitable for dosimetry activities in this cardiac catheterization survey. In preparation for the survey, the American College of Radiology (ACR) provided financial assistance for surveyor training. The Society for Cardiovascular Angiography and Interventions (SCAI) assisted in the preparation of survey components and in encouraging participation by selected clinical sites.

SURVEY SITE SELECTION

A random sample of clinical facilities likely to perform cardiac catheterization was selected from databases provided by each participating state radiological health program that identified clinical sites with registered fluoroscopic equipment. Some state databases provided a broader listing of sites including, for example, sites having any type of radiographic equipment, including dental offices. These sites were removed from sample selection. Distribution of the sample size among the participating state programs was determined using the most recent population data available from the U.S. Census Bureau. Each

¹ Visit www.crcpd.org/pubs/NEXT.aspx for further information regarding these two NEXT surveys.

state was provided a sample size based on its relative population. A target sample of approximately 300 clinical sites was identified for survey, all of them hospitals. By the conclusion of the survey, 199 sites were surveyed in 30 states. Thirty state radiological health programs from the states listed in Table 1 participated in data gathering for this survey.

Arizona	Michigan	Ohio
Arkansas	Minnesota	Pennsylvania
California	Missouri	South Carolina
Hawaii	Nebraska	South Dakota
Idaho	New Hampshire	Tennessee
Illinois	New Jersey	Texas
lowa	New York	Virginia
Kansas	Nevada	Washington
Louisiana	North Carolina	West Virginia
Maryland	North Dakota	Wisconsin

Table 1. State radiological health programs participating in gathering data.

SURVEY COMPONENTS

The survey consisted of three components, including a worksheet, a facility questionnaire and a clinical procedure data form.

WORKSHEET FOR DATA COLLECTION BY A TRAINED NEXT SURVEYOR

The scope of data collected in the surveyor data form includes:

- survey identification and surveyor identification;
- facility location and contact information;
- procedure volumes;
- features and characteristics of fluoroscopy imaging equipment;
- measurement of x-ray dose indices [e.g., air kerma rate and half-value layer (HVL) for inferring patient dose];
- assessment of image quality; and
- collection of technique factors (exposure data, kVp and mA).

FACILITY QUESTIONNAIRE COMPLETED BY FACILITY STAFF

The data collected in the facility questionnaire includes:

- survey identification and surveyor identification;
- data on clinical staff involved in cardiac invasive procedures;
- facility and fluoroscopic unit caseloads;
- features of fluoroscopy equipment;
- radiation safety procedures; and
- quality control (Q/C) and quality assurance (Q/A) of fluoroscopy equipment.

CLINICAL PROCEDURE DATA FORM FOR SITES TO RECORD DATA REGARDING CLINICAL CASES PERFORMED

The data collected in this form includes:

- survey identification and surveyor identification;
- procedure identification;
- total procedure fluoroscopy time;
- number of acquisitions during the procedure; and
- values for available dose display indicators.

More information on the survey protocol, the survey forms used for data collection, or on the NEXT program in general can be obtained from the following sources:

- Conference of Radiation Control Program Directors
 <u>http://www.CRCPD.org/pubs/NEXT.aspx</u>
- U.S. Food and Drug Administration Email: <u>mike.hilohi@fda.hhs.gov</u> <u>http://www.fda.gov/RadiationEmittingProducts/RadiationSafety/Nation</u> <u>wideEvaluationofX-RayTrendsNEXT/default.htm</u>

SITE VISIT BY NEXT SURVEYOR

Surveyors from participating state radiation control programs conducted site visits to clinical sites. Prior to conducting surveys, each surveyor was provided comprehensive training on survey procedures including classroom review and hands-on practice at clinical facilities and USFDA training sites. During facility survey visits clinical staff were interviewed for general program data elements such as staffing, equipment inventories, and general quality control and quality assurance practices. Surveyors gathered radiation measurements from the fluoroscopic system most frequently used to perform cardiac catheterization procedures. The NEXT fluoroscopy phantom was used to drive the x-ray output rate of the fluoroscopy system, and additional layers of copper were added to approximate increased attenuation paths and to drive the unit to maximum output rate.

An image quality tool containing two sets of test objects was used to assess low contrast detectability and high contrast detail performance. Surveyors also collected measurements for the calculation of x-ray beam half-value layer.

FACILITY QUESTIONNAIRE

A comprehensive questionnaire was administered to each participating clinical site, seeking additional data regarding aspects of clinical fluoroscopic practice including staff credentialing, diagnostic and interventional fluoroscopy caseloads, and radiation dose management practices.

CLINICAL PROCEDURE DATA

Each facility was asked to track the final dose display values for clinical cases performed on the surveyed fluoroscopy unit for approximately one week. Dose display values captured during this activity included cumulative values for fluoroscopy time, air kerma, dose-area product [(DAP) also known as air kerma-area product (KAP)], and total number of cine sequences. Exams and procedures were identified using six categories:

- cardiac catheterization diagnostic only (for example, coronary artery angiography);
- coronary intervention (for example, coronary artery angioplasty and stent insertion);
- combined diagnostic coronary angiogram and coronary artery intervention;
- other cardiac-intervention only procedures [for example, atrial septal defects (ASD), patent foramen ovale (PFO), and valvuloplasty];
- other non-cardiac only procedure; and
- combined cardiac and non-cardiac procedure.

For each captured exam the facility reported the exam date, the category for the procedure, and cumulative values for all available dose display indicators following completion of the case. If the fluoroscopic equipment provided displays separately for fluoroscopic and cineangiographic modes of operation, these values were reported separately as well. Of the 199 sites that participated in the survey, 166 sites returned a completed clinical case log.

DOSIMETRY AND IMAGE QUALITY EVALUATION

The NEXT fluoroscopy dosimetry phantom is representative of the typical adult abdomen (Suleiman, et.al. 1993), and for this survey was modified to characterize the dosimetry associated with the complex x-ray beam angulations often employed during cardiac catheterization procedures. Surveyors captured measurements of fluoroscopic and cineangiographic air kerma rate for a range of tissue path lengths modeled by the NEXT phantom in combination with varying thicknesses of added copper filtration. Lead was also added to the phantom set-up to drive the fluoroscopic system to its maximum air kerma rate. Surveyors also acquired measurements for the determination of x-ray beam half-value layer.

Figure 1. The CDRH fluoroscopic dosimetry phantom, providing x-ray attenuation equivalent to a typical adult patient having an abdomen anterior/posterior (A/P) dimension of 21.5 cm.

Image quality was evaluated using the same set of test objects used for the previous NEXT surveys of fluoroscopy in 1991 and 1996. High contrast detail

was evaluated using a set of copper mesh patterns. Low contrast detectability was evaluated with an aluminum disk containing a series of shallow precisionmilled holes of constant diameter and varying depth. Both sets of test objects are embedded in a disk-shaped plastic body. The disk with test objects are imaged and evaluated with the phantom to simulate x-ray conditions that would occur with the presence of a real patient. Surveyors report the number of visible copper mesh patterns and low contrast circles visible on the viewing monitor routinely used by clinicians during the exam. There are a total of eight mesh pattern and eight low contrast circles. Both diagnostic fluoroscopic and cineangiographic modes of operation were assessed for image quality.

Figure 2. Test tool used to evaluate image quality for the 2008-2009 NEXT survey.

SUMMARY OF FINDINGS

The results of this survey characterize the state of practice in the United States at the time of data collection (years 2008 - 2009). All 199 surveyed medical facilities were hospitals equipped with at least one fluoroscopic x-ray system for performing cardiac diagnostic and interventional fluoroscopic procedures. Data collection was performed using Excel software and data analysis was done in SAS 9.1 software. Graphics were created with OriginLab's Origin Pro software.

SURVEY DATA FINDINGS

The survey data show these highlights.

- The monthly number of invasive cardiac procedures (diagnostic and interventional) varies broadly by hospital, with an average of 100 procedures per month.
- Less than a third of the surveyed hospitals have procedures in place to minimize cumulative fluoroscopy dose to patients.
- In most cases, the facility's cardiology department stated that it had the necessary resources to perform a dose estimation following a radiation-related incident.
- Only two percent of the surveyed hospitals reported a possible patient radiation injury occurring within three years preceding the survey.

STATISTICAL SUMMARY

Table 2. Clinical technique factors and air kerma rate for fluoroscopic and cinemodes used during routine cardiac catheterization procedures.

	MODE	MEAN	25 [™]	MEDIAN	75 [™]
Air Kerma Rate	Fluoro	34	20	31	39
(mGy/min)ª	Cine	217	129	205	269
x-ray tube kVp	Fluoro	75	70	75	79
	Cine	70	67	70	72
x-ray tube current	Fluoro	43	10	13	50
(mA)	Cine	337	60	381	526
HVL (mm Al) (fluoro	mode)	5.3	4.7	5.0	6.1
Clinical pulse rate	Fluoro	15	5 (81%) , 30 (1	10%) <i>,</i> other (9	%)
pulses/sec (% of sites)	Cine	15	5 (83%) , 30 (2	14%) <i>,</i> other (3	%)

^a AK rate measured 1 cm above table top, using the fluoroscopy phantom.

Values are for the fluoroscopy unit used most frequently for these procedures.

NARRATIVE SUMMARY OF SURVEY RESULTS

- Most of the surveyed fluoroscopy units were relatively new; more than 80% were installed after year 2000.
- Recently installed systems (2007 to 2009) do not show any improvement in image quality assessment when compared to older systems.
- The typical hospital in the United States is equipped with three fluoroscopy systems for cardiac and non-cardiac procedures, typically located in the radiology department. Approximately half of them are used for cardiac interventions.
- The majority of surveyed fluoroscopy units (73.3%) were configured with an anti-scatter grid.
- Preventive maintenance is typically performed on the surveyed fluoroscopy unit on a semi-annual (58% of surveyed sites) or annual basis (31%).
- Fluoroscopy equipment service is most often performed by a contractor (76% of surveyed sites) or by in-house service personnel (22%).
- Digital-based and image intensifier-based fluoroscopy systems were found to be used with similar operational parameters (kVp, mA, air kerma rate) for cardiac catheterization procedures.
- The surveyed fluoroscopy units exhibited similar image quality performance for spatial resolution (number of visible meshes) and image contrast (number of visible holes) when operated in fluoroscopic or cine mode.

Table 3. Image quality scores using test object shown in Figure 2 of this report.

	SURVEYED FLUORO SYSTEMS		
	(N = 191)		
Fluoro mode:	Fluoro	Cine	
# Visible Meshes	6	6	
# Visible Holes	6	7	

Number of visible copper meshes and hole patterns (median values).

SUMMARY OF GENERAL PRACTICE IN THE UNITED STATES: CARDIAC FLUOROSCOPY

One outcome from collected NEXT surveys data is the production of statistics that characterize the general practice for the surveyed exam or procedure. For this survey, sufficient data were collected to permit estimation of statistics of use in the United States for annual caseloads and estimation of the number of facilities performing these procedures.

To determine the number of clinical sites performing cardiac interventional fluoroscopic procedures, the most recent data available from the American Hospital Association were used (AHA 2009). This dataset includes site-level indicators for the provision of adult interventional cardiac catheterization. Although this publication did not describe whether these procedures were provided on-site or at a satellite facility, it was assumed that this code indicated that these procedures were a part of clinical care provided by the site. The total number of hospitals in the AHA guidebook that had this particular identification was counted to determine a total figure for the number of hospitals in the United States that provided these procedures in 2009. Data from the NEXT survey regarding facility caseloads for cardiac fluoroscopic procedures were then used to determine a total procedure volume for cardiac fluoroscopic procedures in the United States in 2009, separately for adult and pediatric patients. The Table 4 summarizes the findings and comparison with similar figures from the National Council of Radiation Protection and Measurements (NCRP) and IMV (IMV 2006).

ILLUSTRATIONS

Appendices in this report present descriptive statistics, frequency distributions and charts illustrating key points. The appendices present findings from the three components of the survey:

- worksheet;
- facility questionnaire; and
- clinical procedure data form.

Where insufficient data were available, the appendices so note.

Average facility annual caseload for cardiac catheterization procedures at	1917 (adult)
surveyed clinical sites:	188 (pediatric)
	2476
Count of hospitals in the United States conducting cardiac invasive fluoroscopic procedures (AHA Guide, 2009)	
Fraction of randomly selected survey sites that conduct pediatric cases	7.2%
Traction of randomly selected survey sites that conduct pediathe cases	
Projected annual caseload volume in the United States for coronary	4.75 (adults)
angiography (millions)	0.03 (pediatric)
Total adult and pediatric annual cardiac invasive fluoroscopic caseload in	4.78
the United States (millions)	
Comparable statistics for annual cardiac catheterization workload in the	
United States (millions) from:	
NCRP ^a (2009)	4.64
IMV ^b (2006)	3.75

Table 4. Summary of statistics for cardiac catheterization in the United States.

^a *NCRP Report No. 160. Ionizing Radiation Exposure of the Population of the United States.* March 3, 2009; Bethesda, Maryland: National Council on Radiation Protection and Measurements.

^b Benchmark Report: Cardiac Cath Labs 2006. Des Plaines, Illinois: 2006 IMV Medical Information Division, Inc. NOTE: All cases (cardiac and non-cardiac) in cardiac catheterization labs = 4.21 million. Combined with their published value of 89% cases=cardiac (page 2 of 2006 report) gives 3.75 million cardiac cases in the catheterization lab.

REFERENCES

AHA, 2009. *AHA Guide 2009.* Chicago, Illinois: Health Forum, an American Hospital Association affiliate.

Balter, Stephen and Jeffrey Moses, 2007. *Managing Patient Dose in Interventional Cardiology*. CCI 70(2), 2007: 244-249.

NCRP, 2009. NCRP Report No. 160. Ionizing Radiation Exposure of the Population of the United States. March 3, 2009. Bethesda Maryland: National Council on Radiation Protection and Measurements.

Suleiman et al. 1993. Assessing Patient Exposure in Fluoroscopy. Radiation Protection Dosimetry 49(1/3), 1993:141-143.

IMV, 2006. *Benchmark Report: Cardiac Cath Labs 2006.* Des Plaines, Illinois: 2006 IMV Medical Information Division, Inc.

APPENDICES

APPENDIX A - DATA FROM THE SURVEYOR WORKSHEET

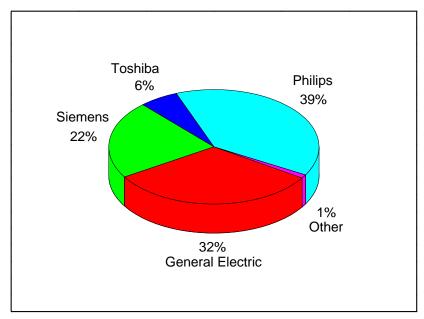

MANUFACTURER OF SURVEYED FLUOROSCOPIC UNIT

Table A - 1. Frequency distribution for manufacturer of surveyed fluoroscopy units.

Manufacturer	Frequency	Percent	Cumulative percent
General Electric	60	32.1	32.1
Philips	73	39.0	71.1
Shimadzu	1	0.5	71.7
Siemens	41	21.9	93.6
Toshiba	12	6.4	100.0

Reference: Surveyor worksheet (12).

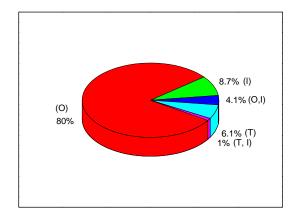
Number observations = 187. Missing data = 12 (data not entered by surveyors).

Reference: Surveyor worksheet (12). Number observations = 187. Missing data = 12 (data not entered by surveyors).

Figure A - 1. Manufacturer of the surveyed fluoroscopy units by percent.

SERVICE PROVIDER FOR SURVEYED FLUOROSCOPIC UNIT

Service provider	Frequency	Percent	Cumulative percent
0	157	80.1	80.1
I	17	8.7	88.8
O and I	8	4.1	92.9
Т	12	6.1	99.0
T and I	2	1.0	100.0


Table A - 2. Frequency distribution for type of service providers for the surveyed fluoroscopy units.

O = Original equipment manufacturer

I = In-house service provider

T = Third party service provider

Reference: Surveyor Worksheet (15). Number observations = 196. Missing data = 3 (not entered by surveyors).

O = Original equipment manufacturer
 I = In-house service provider
 T = Third party service provider

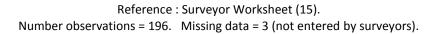
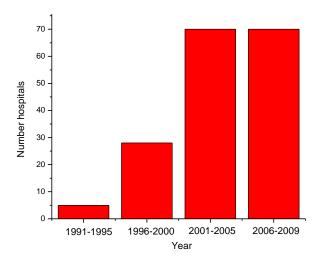


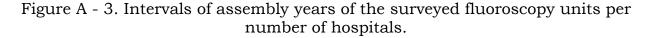
Figure A - 2. Types of service providers for the surveyed fluoroscopy units by percent of total reported.

YEAR OF ASSEMBLY FOR THE SURVEYED FLUOROSCOPY UNIT


Table A - 3.	Frequency distribution for intervals of assembly years of the
	surveyed fluoroscopy units.

Assembly year interval	Frequency	Percent	Cumulative percent
1991-1995	5	2.9	2.9
1996-2000	28	16.2	19.1
2001-2005	70	40.5	59.6
2006-2009	70	40.4	100.0

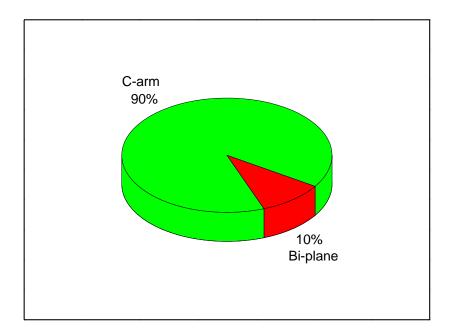
Reference: Surveyor worksheet (16 b).


Number observations = 173. Missing data = 26 (not entered by surveyors).

Note: The surveyor collected data on the timeframe when the fluoroscopic system was installed at the facility. If an exact year could not be provided, a best estimate was requested.

Reference: Surveyor worksheet (16 b). Number observations = 173. Missing data = 26 (not entered by surveyors).

Note: The surveyor collected data on the timeframe when the fluoroscopic system was installed at the facility. If an exact year could not be provided, a best estimate was requested.


FLUOROSCOPIC EQUIPMENT TYPE

Equipment type	Frequency	Percent	Cumulative percent
Bi-plane system	20	10.1	10.1
C-arm configuration	178	89.9	100.0

Table A – 4. Frequency distribution for fluoroscopy unit equipment type.

Reference: Surveyor Worksheet (17).

Number observations = 198. Missing data = 1 (not entered by surveyors).

Reference: Surveyor Worksheet (17). Number observations = 198. Missing data = 1 (not entered by surveyors).

Figure A – 4. Percent of fluoroscopy unit types.

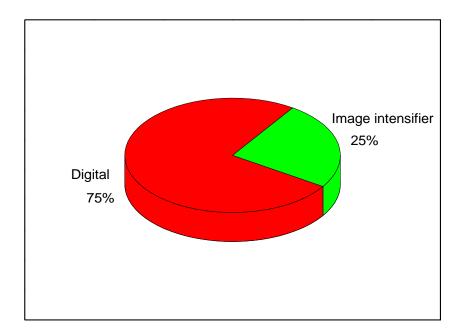

IMAGE RECEPTOR TYPE FOR THE SURVEYED FLUOROSCOPIC UNIT

Table A – 5. Frequency distribution for the fluoroscopy unit image receptor type.

Image receptor type	Frequency	Percent	Cumulative percent
Digital	146	75.3	75.3
Image intensifier	48	24.7	100.0

Reference: Surveyor Worksheet (18).

Number observations =194. Missing data = 5 (not entered by surveyors).

Reference: Surveyor Worksheet (18). Number observations = 194. Missing data = 5 (not entered by surveyors).

Figure A – 5. Distribution of the fluoroscopy unit image receptor type by percent.

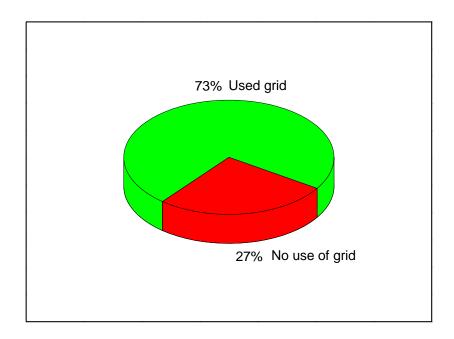

GRID USE FOR THE SURVEYED FLUOROSCOPIC UNIT (ADULT PROCEDURES)

Table A – 6. Frequency distribution for use of grid for adult fluoroscopic procedures.

Grid used	Frequency	Percent	Cumulative percent
No	51	26.7	26.7
Yes	140	73.3	100.0

Reference: Surveyor Worksheet (19 a).

Number observations = 191. Missing data = 8 (not entered by surveyors).

Reference: Surveyor Worksheet (19 a). Number observations = 191. Missing data = 8 (not entered by surveyors).

Figure A – 6. Percent using grid for adult fluoroscopic procedures.

GRID USE (PEDIATRICS)

Not enough data available.

TYPE OF CINEANGIOGRAPHIC EQUIPMENT

Two possible types of cineradiographic image acquisition equipment may be used during cardiac invasive procedures. They are:

- conventional film-based equipment (F); and
- digital-based equipment (D).

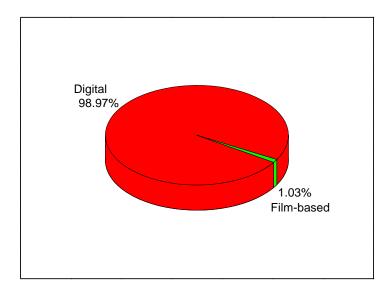

If the fluoroscopy system had multiple acquisition equipment types (cine film as well as digital), then the most frequently used mode is reported.

Table A – 7. Frequency	distribution for ty	pe of cine acqu	uisition system.
		I I.	

Cine equipment type	Frequency	Percent	Cumulative percent
Digital	193	99.0	99.0
Film based	2	1.0	100.0

Reference: Surveyor Worksheet (20).

Number observations = 195. Missing data = 4 (not entered by surveyors).

Reference: Surveyor Worksheet (20). Number observations = 195. Missing data = 4 (not entered by surveyors).

Figure A – 7. Types of cine acquisition systems by percent.

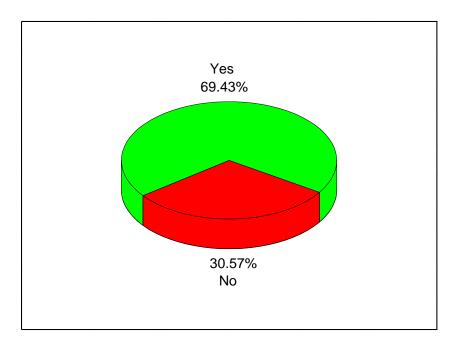

AVAILABILITY OF DISPLAY FOR KERMA-AREA PRODUCT (KAP) AT FLUOROSCOPIST'S WORKING LOCATION

Table A – 8. Frequency distribution for KAP displayed at fluoroscopist's working location.

KAP display at working location	Frequency	Percent	Cumulative percent
Yes	134	69.4	69.4
No	59	30.6	100.0

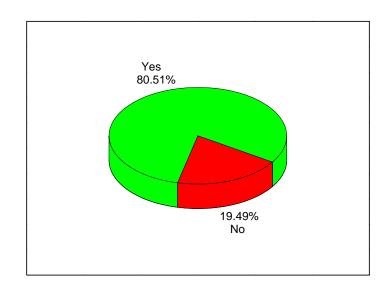
Reference: Surveyor worksheet (21 a).

Number observations = 193. Missing data = 6 (not entered by surveyors).

Reference: Surveyor worksheet (21 a). Number observations = 193. Missing data = 6 (not entered by surveyors).

Figure A – 8. Percent displaying KAP at fluoroscopist's working location.

AVAILABILITY OF KERMA-AREA PRODUCT (KAP) DISPLAY AT FLUOROSCOPIC UNIT CONTROL CONSOLE


Table A – 9. Frequency distribution for KAP displayed at fluoroscopic system control console.

KAP display at unit control console	Frequency	Percent	Cumulative percent
Yes	157	80.5	80.5
No	38	19.5	100.0

Reference : Surveyor Worksheet (21 d).

Number observations = 195. Missing data = 4 (not entered by surveyors).

Note: The control console is typically at a location that is not easily accessible/viewable from the fluoroscopist's working location.

Reference : Surveyor Worksheet (21 d). Number observations = 195. Missing data = 4 (not entered by surveyors).

Note: The control console is typically at a location that is not easily accessible/viewable from the fluoroscopist's working location.

Figure A – 9. Percent displaying KAP at fluoroscopic system control console.

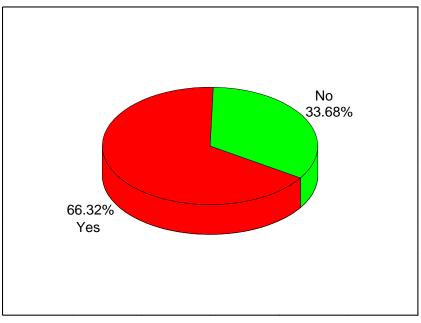

AVAILABILITY OF DISPLAY FOR CUMULATIVE AIR KERMA AT FLUOROSCOPIST'S WORKING LOCATION

Table A – 10. Frequency distribution for air kerma displayed at fluoroscopist's working location.

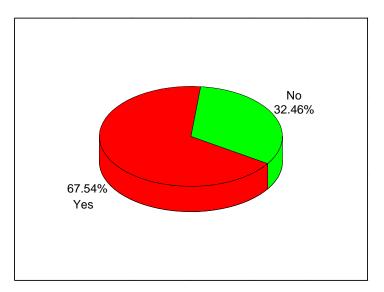
Air kerma displayed at working location	Frequency	Percent	Cumulative percent
Yes	126	66.3	66.3
No	64	33.7	100.0

Reference: Surveyor Worksheet (21 b).

Number observations = 190. Missing data = 9 (not entered by surveyors).

Reference: Surveyor Worksheet (21 b). Number observations = 190. Missing data = 9 (not entered by surveyors).

AVAILABILITY OF CUMULATIVE AIR KERMA DISPLAY AT FLUOROSCOPY UNIT CONTROL CONSOLE


Table A – 11. Frequency distribution for air kerma displayed at fluoroscopic system control console.

Air kerma display at unit console	Frequency	Percent	Cumulative percent
Yes	129	67.5	67.5
No	62	32.5	100.0

Reference: Surveyor Worksheet (21 e).

Number observations = 191. Missing data = 8 (not entered by surveyors).

NOTE: The control console is typically at a location that is not easily accessible/viewable from the fluoroscopist's working location.

Reference: Surveyor Worksheet (21 e). Number observations = 191. Missing data = 8 (not entered by surveyors).

NOTE: The control console is typically at a location that is not easily accessible/viewable from the fluoroscopist's working location.

Figure A – 11. Percent displaying air kerma at fluoroscopic system control console.

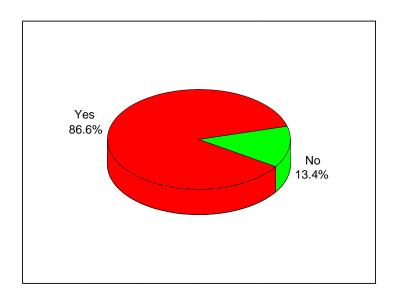

DISPLAY OF CUMULATIVE FLUOROSCOPY TIME AT FLUOROSCOPIST'S WORKING LOCATION

Table A - 12. Frequency distribution for irradiation time displayed at fluoroscopist's working location.

Cumulative fluoroscopy time displayed at working location	Frequency	Percent	Cumulative percent
Yes	168	86.6	86.6
No	26	13.4	100.0

Reference: Surveyor Worksheet (21 c).

Number observations = 194. Missing data = 5 (not entered by surveyors).

Reference: Surveyor Worksheet (21 c). Number observations = 194. Missing data = 5 (not entered by surveyors).

Figure A- 12. Percent displaying irradiation time at fluoroscopist's working location.

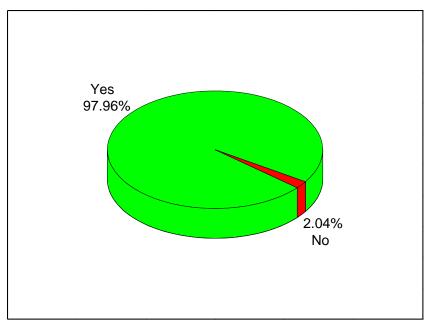
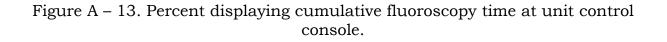

AVAILABILITY OF DISPLAY FOR CUMULATIVE FLUOROSCOPY TIME AT FLUOROSCOPY UNIT CONTROL CONSOLE

Table A – 13. Frequency distribution for cumulative fluoroscopy time displayed at unit control console.


Cumulative	Frequency	Percent	Cumulative
fluoroscopy time			percent
displayed at unit			•
displayed at diffe			
console			
Yes	192	98.0	98.0
No	4	2.0	100.0
	-		

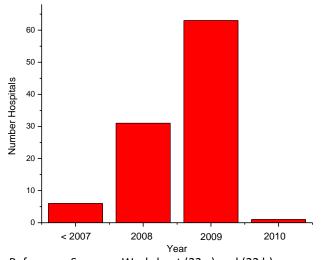
Reference: Surveyor Worksheet (21 f).

Number observations = 196. Missing data = 3 (not entered by surveyors).

Reference: Surveyor Worksheet (21 f). Number observations = 196. Missing data = 3 (not entered by surveyors).

YEAR OF MOST RECENT DOSE DISPLAY EQUIPMENT CALIBRATION

Table A – 14. Frequency distribution for year of most recent dose display equipment calibration performed on the fluoroscopy equipment.


Calibrated values: dose-area product (DAP)/air kerma-area product (KAP)/air kerma (AK).

Most recent calibration year	Frequency	Percent	Cumulative percent
Before 2007	6	6	6
2008	31	31	37
2009	63	62	99
2010	1	1	100

Reference: Surveyor Worksheet (22 a) and (22 b).

Number observations = 101. Missing data = 98 (not entered by surveyors).

Note: Most recent calibration date of dose display equipment. DAP/KAP calibration references (22 a) and air kerma references (22 b) were entered together because dates are the same.

Reference: Surveyor Worksheet (22 a) and (22 b). Number observations = 101. Missing data = 98 (not entered by surveyors).

Figure A – 14. Year of most recent dose display equipment calibration performed on the fluoroscopy equipment per number of hospitals.

Note: Most recent calibration date of dose display equipment. DAP/KAP calibration references (22 a) and air kerma references (22 b) were entered together because dates are the same.

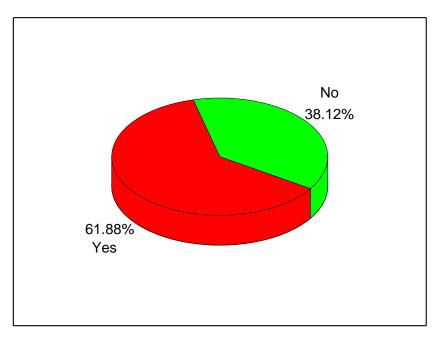
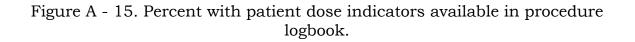

AVAILABILITY OF PATIENT RADIATION DOSE IN PROCEDURE LOGBOOK

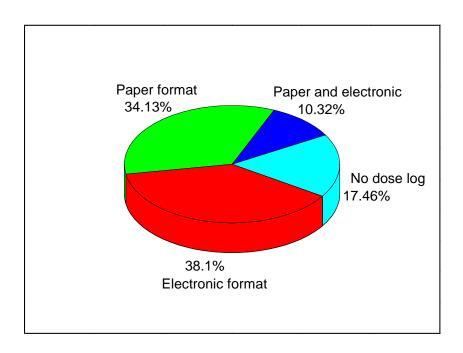
Table A - 15. Frequency distribution for patient dose indicators collected in procedure logbook.


Patient radiation dose available in logbook	Frequency	Percent	Cumulative percent
Yes	112	61.9	61.9
No	69	38.1	100

Reference: Surveyor Worksheet (23 a).

Number observations = 181. Missing data = 18 (not entered by surveyors).

Reference: Surveyor Worksheet (23 a). Number observations = 181. Missing data = 18 (not entered by surveyors).


FORMAT OF PATIENT RADIATION DOSE LOGBOOK

Format	Frequency	Percent	Cumulative percent
Electronic (E)	48	38.1	38.1
Paper (P)	43	34.1	72.2
Both P&E (B)	13	10.3	82.5
None (N)	22	17.5	100.0

Table A – 16. Frequency distribution for procedure logbook by type of format.

Reference: Surveyor Worksheet (23 b).

Number observations = 126. Missing data = 73 (not entered by surveyors).

Reference: Surveyor Worksheet (23 b). Number observations = 126. Missing data = 73 (not entered by surveyors).

Figure A – 16. Percent of procedure logbook types of format.

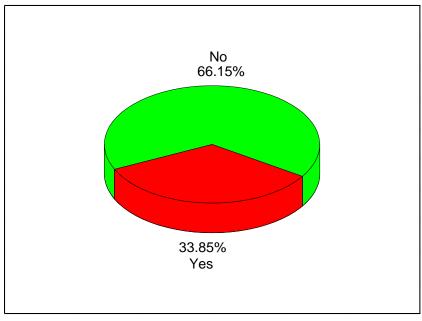

CUMULATIVE KERMA-AREA PRODUCT (KAP) RECORDED IN PATIENT RADIATION DOSE LOGBOOK

Table A – 17. Frequency distribution for cumulative KAP recorded in the patient radiation dose/procedure logbook.

KAP recorded in	Frequency	Percent	Cumulative
patient radiation			percent
dose logbook			
Yes	44	33.8	33.8
No	86	66.2	100.0

Reference: Surveyor Worksheet (23 c).

Number observations = 130. Missing data = 69 (not entered by surveyors).

Reference: Surveyor Worksheet (23 c). Number observations = 130. Missing data = 69 (not entered by surveyors).

Figure A – 17. Percent recording cumulative KAP in the patient radiation dose/procedure logbook.

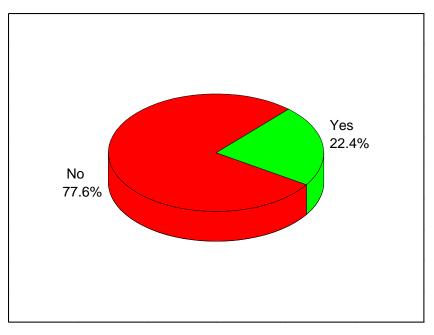
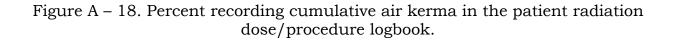

CUMULATIVE AIR KERMA RECORDED IN PATIENT RADIATION DOSE LOGBOOK

Table A – 18. Frequency distribution for cumulative air kerma recorded in the patient radiation dose/procedure logbook.


Air kerma recorded in patient radiation dose/procedure logbook	Frequency	Percent	Cumulative percent
Yes	28	22.4	22.4
No	97	77.6	100.0

Reference: Surveyor Worksheet (23 d).

Number observations = 125. Missing data = 74 (not entered by surveyors).

Reference: Surveyor Worksheet (23 d). Number observations = 125. Missing data = 74 (not entered by surveyors).

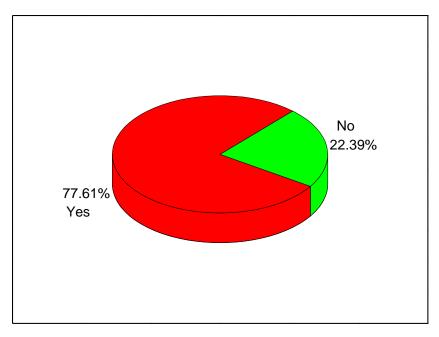
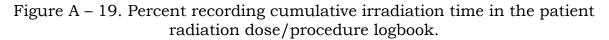

CUMULATIVE FLUOROSCOPY TIME RECORDED IN PATIENT RADIATION DOSE LOGBOOK

Table A – 19. Frequency distribution for cumulative irradiation time recorded in the patient radiation dose/procedure logbook.


Cumulative	Frequency	Percent	Cumulative
irradiation time			percent
recorded in patient			
radiation			
dose/procedure			
logbook			
Yes	104	77.6	77.6
No	30	22.4	100.0

Reference: Surveyor Worksheet (23 e).

Number observations = 134. Missing data = 65 (not entered by surveyors).

Reference: Surveyor Worksheet (23 e). Number observations = 134. Missing data = 65 (not entered by surveyors).

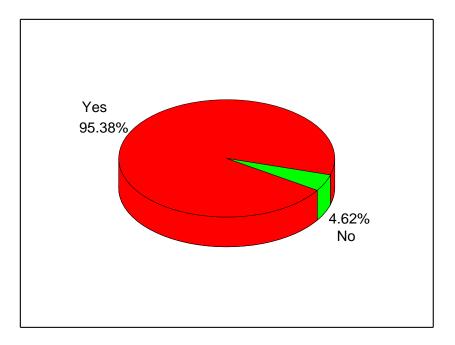

FREQUENCY OF DOSE INDICATOR(S) RECORDED IN INDIVIDUAL PATIENT FILE OR REPORT

Table A- 20. Frequency distribution for patient dose indicators collected in individual patient file or report.

Dose indicator(s) recorded	Frequency	Percent	Cumulative
in patient file or report			percent
Yes	186	95.4	95.4
No	9	4.6	100.00

Reference: Surveyor Worksheet (23 f).

Number observations = 195. Missing observations = 4 (not entered by surveyors).

Reference: Surveyor Worksheet (23 f). Number observations = 195. Missing observations = 4 (not entered by surveyors).

Figure A- 20. Percent collecting patient dose indicators in individual patient file or report.

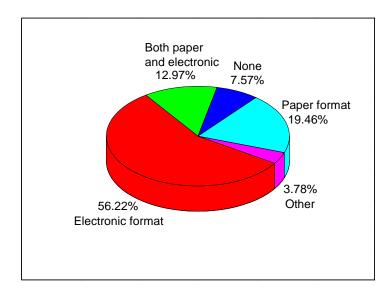
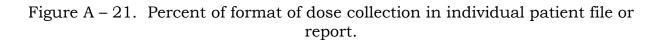

FORMAT OF DOSE COLLECTION IN INDIVIDUAL PATIENT FILES OR REPORTS

Table A – 21. Frequency distribution for type of format of dose collection in individual patient file or report.


Type of format of	Frequency	Percent	Cumulative	Cumulative
dose collection			frequency	percent
Electronic (E)	104	56.2	104	56.2
Paper (P)	36	19.5	140	75.7
Both P&E (B)	24	13.0	164	88.7
None (N)	14	7.6	178	96.3
Other	7	3.8	185	100.1

Reference: Surveyor Worksheet (23 g).

Number observations = 185. Missing data = 14 (not entered by surveyors).

Reference: Surveyor Worksheet (23 g). Number observations = 185. Missing data = 14 (not entered by surveyors).

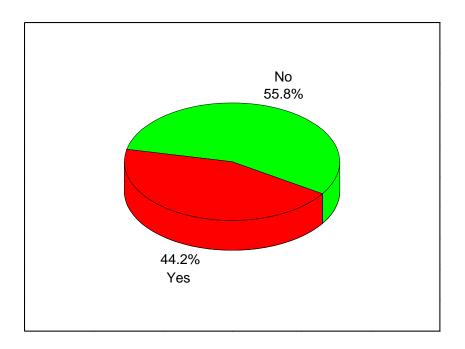

RECORDING OF CUMULATIVE AIR KERMA AREA-PRODUCT (KAP) INTO PATIENT FILE/REPORT

Table A - 22. Frequency distribution for cumulative KAP values recorded in patient file or report.

KAP recorded into patient file/report	Frequency	Percent	Cumulative percent
Yes	80	44.2	44.2
No	101	55.8	100.0

Reference: Surveyor Worksheet (23 h).

Number observations = 181. Missing data = 18 (not entered by surveyors).

Reference: Surveyor Worksheet (23 h). Number observations = 181. Missing data = 18 (not entered by surveyors).

Figure A - 22. Percent recording cumulative KAP values in patient file or report.

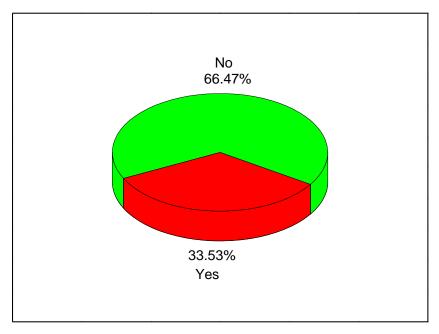

RECORDING OF CUMULATIVE AIR KERMA INTO PATIENT FILE OR REPORT

Table A – 23. Frequency distribution for cumulative air kerma recorded in patient file or report.

Air kerma	Frequency	Percent	Cumulative
recorded into			percent
patient file or			
report			
Yes	58	33.5	33.5
No	115	66.5	100.0

Reference: Surveyor Worksheet (23 i).

Number observations = 173. Missing data = 26 (not entered by surveyors).

Reference: Surveyor Worksheet (23 i). Number observations = 173. Missing data = 26 (not entered by surveyors).

Figure A – 23. Percent recording cumulative air kerma in patient file or report.

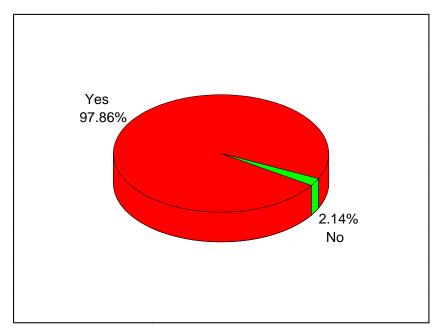
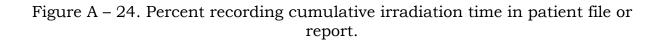

RECORDING OF CUMULATIVE IRRADIATION TIME IN PATIENT FILE OR REPORT

Table A – 24. Frequency distribution for cumulative irradiation time recorded in patient file or report.


Cumulative irradiation time recorded in patient file or report	Frequency	Percent	Cumulative percent
Yes	183	97.9	97.9
No	4	2.1	100.0

Reference: Surveyor Worksheet (23 j).

Number observations = 187. Missing data = 12 (not entered by surveyors).

Reference: Surveyor Worksheet (23 j). Number observations = 187. Missing data = 12 (not entered by surveyors).

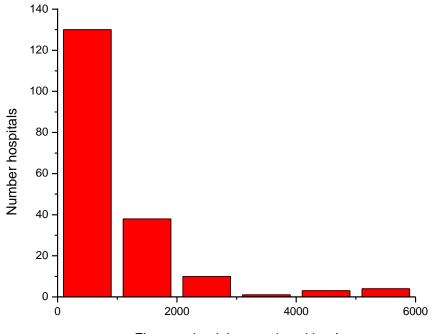
ANNUAL FLUOROSCOPIC PROCEDURE WORKLOAD FOR SURVEYED FLUOROSCOPY UNIT (ADULT PROCEDURES)

Table A – 25. Descriptive statistics for fluoroscopic unit annual workload (adult procedures).

Fluoroscopy	Mean	N	Std Dev	Minimum	Q25	Median	Q75	Maximum
workload adult	1013	186	1201	5	400	710	1103	8736
procedures								

Reference: Surveyor Worksheet (24a).

Number observations = 186. Missing data = 13 (not entered by the surveyors).


Table A – 26. Frequency distribution for range of fluoroscopic unit annual workload (adult procedures).

Unit annual workload in number of adult procedures	Frequency	Percent	Cumulative percent
0-1000	130	69.9	69.9
1001-2000	38	20.4	90.3
2001-3000	10	5.4	95.7
3001-4000	1	0.5	96.2
4001-5000	3	1.6	97.8
5001 +	4	2.2	100.0

Reference: Surveyor Worksheet (24a).

Number observations = 186. Missing data = 13 (not entered by the surveyors).

ANNUAL FLUOROSCOPIC PROCEDURE WORKLOAD FOR SURVEYED FLUOROSCOPY UNIT (ADULT PROCEDURES)

Fluoro unit adult annual workload

Reference: Surveyor Worksheet (24a). Number observations = 186. Missing data = 13 (not entered by the surveyors).

Figure A – 25. Fluoroscopic unit annual workload range for adult procedures per number of hospitals.

FLUOROSCOPIC UNIT ANNUAL PROCEDURE WORKLOAD (PEDIATRIC)

Not enough data available.

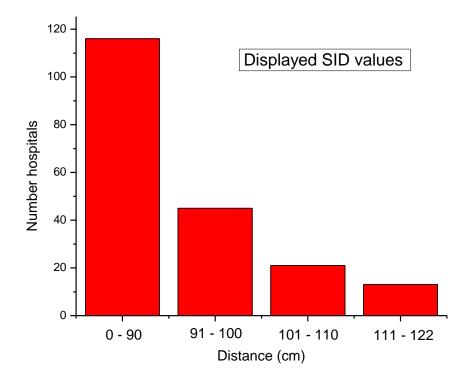
SOURCE-TO-IMAGE DISTANCE (SID) ON SURVEYED FLUOROSCOPIC UNIT AS CONFIGURED FOR A TYPICAL ADULT PATIENT

Table A – 27. Descriptive statistics for displayed source-to-image distance (in centimeters) as configured for adult patient.

Displayed	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
SID (cm)	93.0	195	9.1	65	88	90	97	122

Reference: Surveyor Worksheet (28).

Number observations = 195. Missing data = 4 (not entered by the surveyors).


Table A – 28. Frequency distribution for displayed source-to-image distance range (in centimeters) as configured for adult patient.

Displayed SID	Frequency	Percent	Cumulative percent
0-90	116	59.5	59.5
91-100	45	23.1	82.6
101-110	21	10.8	93.4
111 +	13	6.6	100.0

Reference: Surveyor Worksheet (28).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

SOURCE-TO-IMAGE DISTANCE (SID) ON SURVEYED FLUOROSCOPIC UNIT AS CONFIGURED FOR A TYPICAL ADULT PATIENT

Reference: Surveyor Worksheet (28). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure A – 26. Displayed source-to-image distance range (in centimeters) as configured for adult patient by number of hospitals.

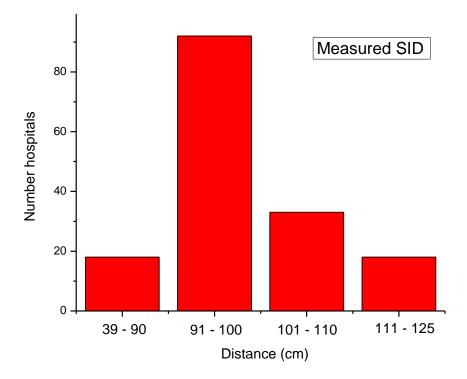
MEASURED SOURCE-TO-IMAGE DISTANCE (SID)

Table A – 29. Descriptive statistics for source-to-image distance as measured by the surveyor (in centimeters).

Measur	ed Mean	N	Std Dev	Min	Q25	Median	Q75	Max
SID (cm	98.7	161	11.0	39	90	100	104	125

Number observations = 161.

Missing data = 38 (not entered by the surveyors).


Table A – 30. Frequency distribution for source-to-image distance ranges as measured by the surveyor (in centimeters).

Measured SID	Frequency	Percent	Cumulative percent
0-90	18	11.2	11.2
91-100	92	57.1	68.3
101-110	33	20.5	88.8
111 +	18	11.2	100.0

Number observations = 161.

Missing data = 38 (not entered by the surveyors).

MEASURED SOURCE-TO-IMAGE DISTANCE (SID)

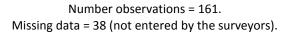


Figure A – 27. Source-to-image distance (SID) ranges as measured by the surveyor (in centimeters) per number of hospitals.

DIFFERENCE BETWEEN DISPLAYED AND MEASURED SOURCE-TO-IMAGE DISTANCE (SID) (ABSOLUTE VALUES)

Table A- 31. Descriptive statistics for difference between displayed and measured source-to-image distance (absolute value) in centimeters.

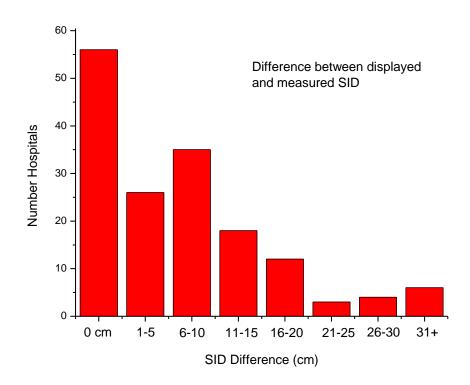
Difference	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
SID (cm)	7.5	160	9.1	0	0	4.5	11.0	48.0

Number observations = 160.

Missing data = 39 (not entered by the surveyors).

Note: The difference between the SID displayed and measured is expressed as an absolute value.

Table A- 32. Range of difference between displayed and measured source-toimage distance (absolute value) in centimeters.


Difference SID	Frequency	Percent	Cumulative percent
0	56	35.0	35.0
1-5	26	16.2	51.2
6-10	35	21.9	73.1
11 – 15	18	11.3	84.4
16 - 20	12	7.5	91.9
21 – 25	3	1.9	93.8
26 - 30	4	2.5	96.3
31 +	6	3.8	100.1

Number observations = 160.

Missing data = 39 (not entered by the surveyors).

Note: The difference between the SID displayed and measured is expressed as an absolute value.

DIFFERENCE BETWEEN DISPLAYED AND MEASURED SOURCE-TO-IMAGE DISTANCE (SID) (ABSOLUTE VALUES)

Number observations = 160. Missing data = 39 (not entered by the surveyors). Note: The difference between the SID displayed and measured is expressed as an absolute value.

Figure A – 28. Range of difference between displayed and measured source-toimage distance (absolute value) in centimeters per number of hospitals.

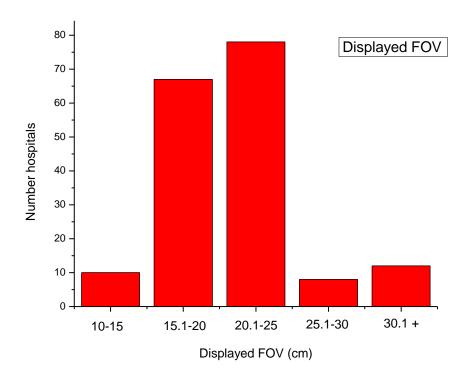
CLINICAL SETTING FOR FLUOROSCOPIC FIELD-OF-VIEW (FOV) ON SURVEYED FLUOROSCOPIC UNIT AS CONFIGURED FOR A TYPICAL ADULT PATIENT

Table A – 33. Descriptive statistics for displayed field-of-view (FOV) as configured for typical adult patient (in centimeters).

	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
FOV (cm)	21.8	195	5.2	10	20	22	25	48

Reference: Surveyor Worksheet (29).

Number observations = 195. Missing data = 4 (not entered by the surveyors).


Table A – 34. Frequency distribution of ranges of displayed field-of-view (FOV) as configured for typical adult patient (in centimeters).

FOV (cm)	Frequency	Percent	Cumulative percent
10 - 15	10	5.1	5.1
15.1 – 20	87	44.6	49.7
20.1 – 25	78	40.0	89.7
25.1 - 30	8	4.1	93.8
30.1 +	12	6.2	100.0

Reference: Surveyor Worksheet (29).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

CLINICAL SETTING FOR FLUOROSCOPIC FIELD-OF-VIEW (FOV) ON SURVEYED FLUOROSCOPIC UNIT AS CONFIGURED FOR A TYPICAL ADULT PATIENT

Reference: Surveyor Worksheet (29). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure A – 29. Ranges of displayed field-of-view (FOV) as configured for typical adult patient (in centimeters) per number of hospitals.

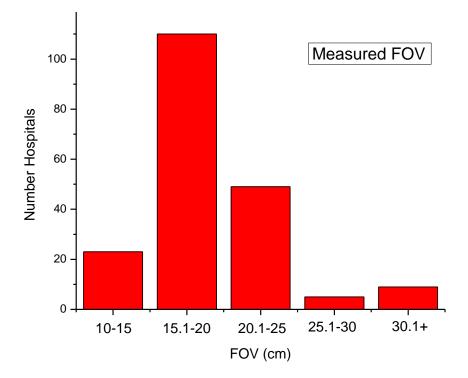
MEASURED FIELD-OF-VIEW

Table A - 35. Descriptive statistics for measured field-of-view (FOV) (in centimeters).

Measured	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
FOV (cm)	20.4	196	5.0	10	17.5	20	23	48

Number observations = 196. Missing data = 3 (not entered by the surveyors).

Field-of-view (FOV) value, in centimeters, as measured by the surveyor.


Table A - 36. Frequency distribution of measured field-of-view (FOV) ranges (in centimeters).

Measured FOV	Frequency	Percent	Cumulative percent
10 - 15	23	11.7	11.7
15.1 – 20	110	56.1	67.8
20.1 – 25	49	25.0	92.8
25.1 - 30	5	2.6	95.4
30.1 +	9	4.6	100.0

Number observations = 196. Missing data = 3 (not entered by the surveyors).

Field-of-view (FOV) value, in centimeters, as measured by the surveyor.

MEASURED FIELD-OF-VIEW

Number observations = 196. Missing data = 3 (not entered by the surveyors).

Field-of-view (FOV) value, in centimeters, as measured by the surveyor.

Figure A - 30. Measured field-of-view (FOV) ranges (in centimeters) per number of hospitals.

ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN MEASURED AND DISPLAYED FIELD-OF-VIEW (FOV)

Table A - 37. Descriptive statistics for difference between measured and displayed field-of-view FOV in centimeters (absolute value).

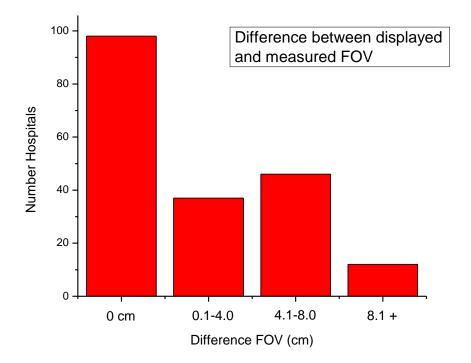
Difference	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
FOV (cm)	2.5	193	3.7	0	0	0	5	26

Number observations = 193.

Missing data = 2 (not entered by the surveyors).

Absolute value of the difference between field-of-view measured by the surveyor and displayed value (in centimeters).

Table A - 38. Frequency distribution for ranges of difference between measured and displayed field-of-view FOV in centimeters (absolute value).


Difference FOV	Frequency	Percent	Cumulative percent
0	98	50.8	50.8
0.1 - 4.0	37	19.2	70.0
4.1-8.0	46	23.8	93.8
8.1+	12	6.2	100.0

Number observations = 193.

Missing data = 2 (not entered by the surveyors).

Absolute value of the difference between field-of-view measured by the surveyor and displayed value (in centimeters).

ABSOLUTE VALUE OF THE DIFFERENCE BETWEEN MEASURED AND DISPLAYED FIELD-OF-VIEW (FOV)

Number observations = 193. Missing data = 2 (not entered by the surveyors).

Absolute value of the difference between field-of-view measured by the surveyor and displayed value (in centimeters).

Figure A - 31. Ranges of difference between measured and displayed field-ofview FOV in centimeters (absolute value) per number of hospitals.

MOST USED FLUOROSCOPY PULSE FREQUENCY

Table A – 39. Frequency distribution for most used fluoroscopy pulse frequency (pulses/second).

Pulse frequency	Frequency	Percent	Cumulative
(pulses / sec)	count		percent
15	119	81.0	81.0
30	15	10.2	91.2
other	13	8.8	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 147. Missing data = 52 (not entered by the surveyors).

Most used fluoroscopy mode pulse frequency (pulses/sec), such as displayed on the system console.

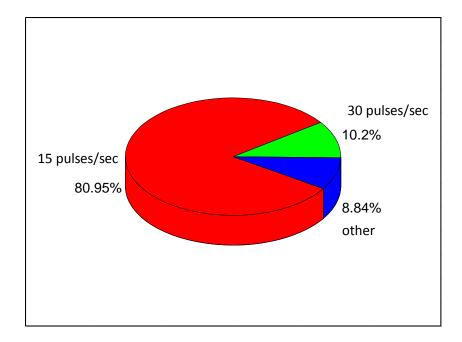
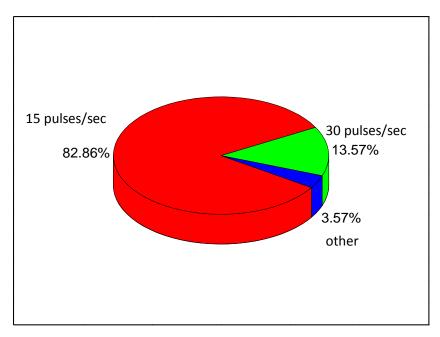


Figure A – 32. Percent of most used fluoroscopy pulse frequency (pulses/second).

MOST USED CINERADIOGRAPHY FRAME RATE


Table A - 40. Frequency distribution of most used cineradiography frame rates (frames/second).

			
Frame rate	Frequency	Percent	Cumulative
(frames /sec)	count		percent
15	116	82.9	82.9
30	19	13.6	96.5
other	5	3.5	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 140. Missing data = 59 (not entered by the surveyors).

Console display of most used cineradiography pulse frequency (pulses/sec).

Reference: Surveyor Worksheet (Table 1). Number observations = 140. Missing data = 59 (not entered by the surveyors).

Console display of most used cineradiography pulse frequency (pulses/sec).

Figure A – 33. Percent of most used cineradiography frame rates (frames/second).

MEASURED EXPOSURE RATE IN FLUOROSCOPY MODE AS MEASURED BY THE SURVEYOR USING A PATIENT-REPRESENTATIVE PHANTOM

Table A- 41. Descriptive statistics for exposure rate in fluoroscopy mode measured using NEXT phantom.

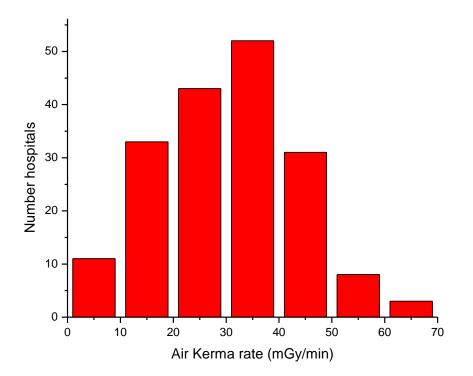
Air kerma	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
rate (mGy/min)	33.7	181	39.4	2.2	20.4	30.6	38.8	511.5

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Table A- 42. Frequency distribution for range of exposure rate in fluoroscopymode measured using NEXT phantom.


Air kerma rate	Frequency	Percent	Cumulative
			percent
0-10	11	6.1	6.1
10.1-20	33	18.2	24.3
20.1-30	43	23.8	48.1
30.1-40	52	28.7	76.8
40.1-50	31	17.1	93.9
50.1-60	8	4.4	98.3
60.1 +	3	1.7	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

MEASURED EXPOSURE RATE IN FLUOROSCOPY MODE AS MEASURED BY THE SURVEYOR USING A PATIENT-REPRESENTATIVE PHANTOM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Figure A - 34. Range of exposure rate in fluoroscopy mode using NEXT phantom per number of hospitals.

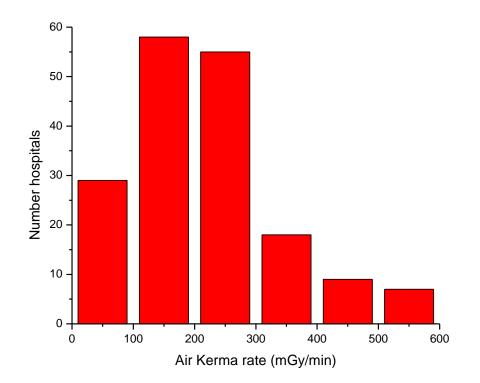
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH PHANTOM ONLY

Table A- 43. Descriptive statistics for exposure rate in cine mode measuredusing the NEXT phantom.

Air kerma	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
rate (mGy/min)	216.8	176	132.7	15.2	129.1	205.4	268.9	803.5

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).


Table A- 44. Frequency distribution for range of exposure rate in cine mode measured using the NEXT phantom.

Air kerma rate	Frequency	Percent	Cumulative percent
0-100	29	16.5	16.5
100.1-200	58	33.0	49.5
200.1-300	55	31.2	80.7
300.1-400	18	10.2	90.9
400.1-500	9	5.1	96.0
500.1 +	7	4.0	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH PHANTOM ONLY

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A - 35. Range of exposure rate in cine mode measured using the NEXT phantom per number of hospitals.

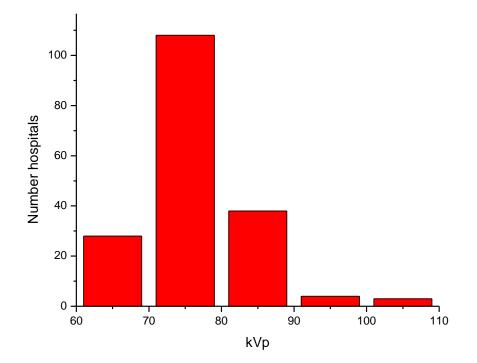
X-RAY TUBE KILO-VOLTAGE (kVp) OBSERVED FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Table A - 45. Descriptive statistics for kVp observed for the most frequently used fluoroscopy mode measured with only the NEXT phantom.

kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	75.3	181	6.9	63	70	75	79	104

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).


Table A - 46. Frequency distribution for range of kVp observed for the most frequently used fluoroscopy mode measured with only the NEXT phantom.

kVp	Frequency	Percent	Cumulative
			percent
60.1-70	28	15.5	15.5
70.1-80	108	59.6	75.1
80.1-90	38	21.0	96.1
90.1-100	4	2.2	98.3
100.1-110	3	1.7	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

X-RAY TUBE KILO-VOLTAGE (kVp) OBSERVED FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Figure A - 36. Range of kVp observed for the most frequently used fluoroscopy mode measured with only the NEXT phantom per number of hospitals.

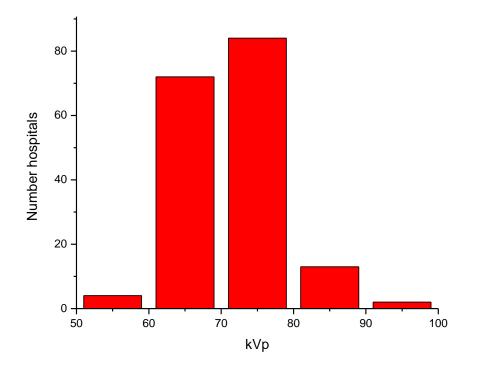
X-RAY TUBE KILOVOLTAGE (kVp) IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Table A – 47. Descriptive statistics for kVp used in cine mode measured using only the NEXT phantom.

ſ	kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
		70.0	175	5.9	52	67	70	72	91

Reference: Surveyor Worksheet (Table 1)

Number observations = 175. Missing data = 24 (not entered by the surveyors).


Table A – 48. Frequency distribution for range of kVp used in cine mode measured using only the NEXT phantom.

kVp	Frequency	Percent	Cumulative
			percent
50.1-60	4	2.3	2.3
60.1-70	72	41.1	43.4
70.1-80	84	48.0	91.4
80.1-90	13	7.4	98.8
90.1-100	2	1.1	99.9

Reference: Surveyor Worksheet (Table 1)

Number observations = 175. Missing data = 24 (not entered by the surveyors).

X-RAY TUBE KILOVOLTAGE (kVp) IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Reference: Surveyor Worksheet (Table 1) Number observations = 175. Missing data = 24 (not entered by the surveyors).

Figure A – 37. Range of kVp used in cine mode measured using only the NEXT phantom per number of hospitals.

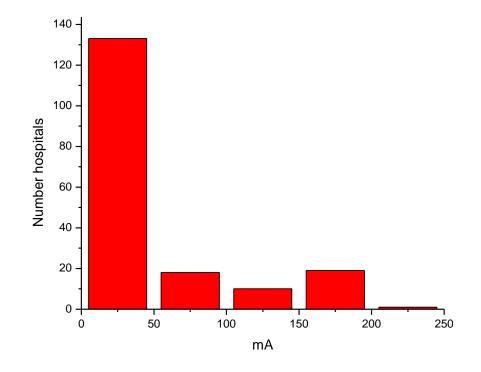
FLUOROSCOPIC TUBE CURRENT (mA) FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Table A - 49. Descriptive statistics for current used for the most frequently used fluoroscopy mode measured with NEXT phantom.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	43.0	181	62.6	1.9	9.6	12.7	50.0	489.0

Reference: Surveyor Worksheet (Table 1)

Number observations = 181. Missing data = 18 (not entered by the surveyors).


Table A - 50. Frequency distribution for range of current used for the most frequently used fluoroscopy mode measured with NEXT phantom.

mA	Frequency	Percent	Cumulative
			percent
0-50	133	73.5	73.5
51.1-100	18	9.9	83.4
100.1-150	10	5.5	88.9
150.1-200	19	10.5	99.4
200.1 +	1	0.6	100.0

Reference: Surveyor Worksheet (Table 1)

Number observations = 181. Missing data = 18 (not entered by the surveyors).

FLUOROSCOPIC TUBE CURRENT (mA) FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Reference: Surveyor Worksheet (Table 1) Number observations = 181. Missing data = 18 (not entered by the surveyors).

Figure A - 38. Range of current used for the most frequently used fluoroscopy mode measured with NEXT phantom per number of hospitals.

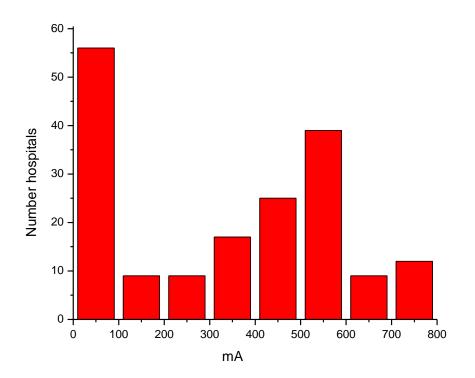
CURRENT IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Table A – 51. Descriptive statistics for current used in cine mode measured using only the NEXT phantom.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	337.2	176	244.5	5.0	60	380.6	525.5	800.0

Reference: Surveyor Worksheet (Table 1)

Number observations = 176. Missing data = 23 (not entered by the surveyors).


Table A – 52. Frequency distribution for range of current used in cine mode measured using only the NEXT phantom.

mA	Frequency	Percent	Cumulative percent
0-100	56	31.8	31.8
100.1-200	9	5.1	36.9
200.1-300	9	5.1	42.0
300.1-400	17	9.7	51.7
400.1-500	25	14.2	65.9
500.1-600	39	22.2	88.1
600.1-700	9	5.1	93.2
700.1-800	12	6.8	100.0

Reference: Surveyor Worksheet (Table 1)

Number observations = 176. Missing data = 23 (not entered by the surveyors).

CURRENT IN CINEANGIOGRAPHY MODE MEASURED USING THE NEXT FLUOROSCOPY PHANTOM (NO ADDITIONAL ATTENUATOR)

Reference: Surveyor Worksheet (Table 1) Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 39. Range of current used in cine mode measured using only the NEXT phantom per number of hospitals.

EXPOSURE RATE FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED WITH NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A – 53. Descriptive statistics for exposure rate for fluoroscopy mode measured using the NEXT phantom and 0.8 mm copper.

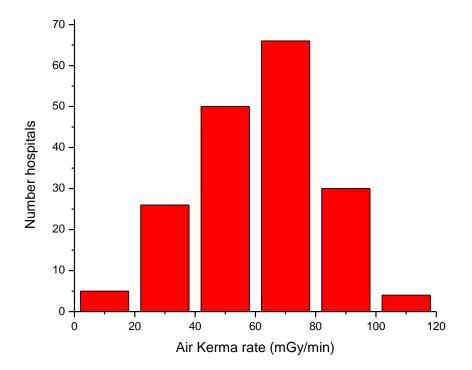
AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	73.4	181	113.5	6.8	47.4	62.6	76.8	1306.6

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image-distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Table A – 54. Frequency distribution for range of exposure rate for fluoroscopy mode measured using the NEXT phantom and 0.8 mm copper.


AK rate	Frequency	Percent	Cumulative percent
0-20	5	2.8	2.8
20.1-40	26	14.4	17.2
40.1-60	50	27.6	44.8
60.1-80	66	36.5	81.3
80.1-100	30	16.6	97.9
100.1 +	4	2.2	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image-distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

EXPOSURE RATE FOR THE MOST FREQUENTLY USED FLUOROSCOPY MODE MEASURED WITH NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Note: Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image-distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Figure A - 40. Range of exposure rate for fluoroscopy mode measured using the NEXT phantom and 0.8 mm copper.

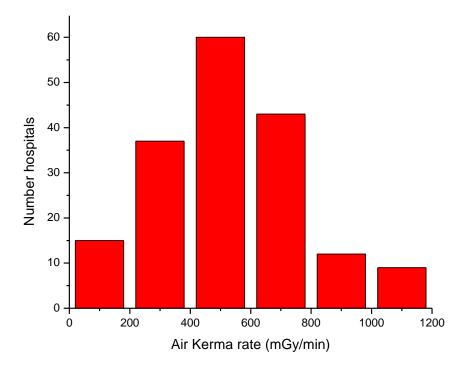
EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A - 55.Descriptive statistics for exposure rate in cine mode measured
with the NEXT phantom and 0.8 mm copper.

AK rate	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	558.5	176	323.1	11.1	358.4	522.8	696.2	2486.9

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).


Table A – 56. Frequency distribution for range of exposure rate in cine mode measured with the NEXT phantom and 0.8 mm copper.

AK rate	Frequency	Percent	Cumulative percent
0-200	15	8.5	8.5
200.1-400	37	21.0	29.5
400.1-600	60	34.1	63.6
600.1-800	43	24.4	88.0
800.1-1000	12	6.8	94.8
1000.1 +	9	5.1	99.9

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1.) Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A - 41. Range of exposure rate in cine mode measured with the NEXT phantom and 0.8 mm copper per number of hospitals.

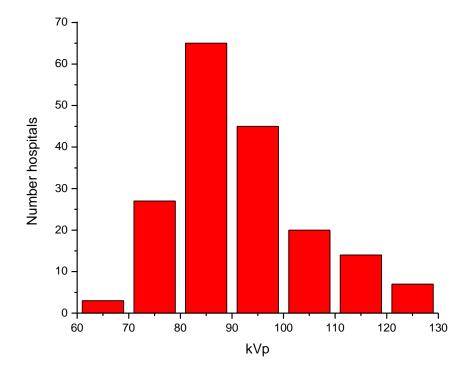
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A – 58. Descriptive statistics for kVp in most used fluoroscopy mode reading with NEXT phantom and 0.8 mm copper.

ſ	kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
		90.8	181	12.7	65	82	89	97	124

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).


Table A – 58. Frequency distribution for range of kVp in most used fluoroscopy mode reading with NEXT phantom and 0.8 mm copper.

kVp	Frequency	Percent	Cumulative
			percent
60-70	3	1.7	1.7
0070	5	1.7	1.7
70.1-80	27	14.9	16.6
80.1-90	65	35.9	52.5
90.1-100	45	24.9	77.4
100.1-110	20	11.0	88.4
110.1-120	14	7.7	96.1
120.1 +	7	3.9	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).

VOLTAGE IN THE MOST USED FLUOROSCOPY MODEREADING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Figure A – 42. Range of kVp in most used fluoroscopy mode reading with NEXT phantom and 0.8 mm copper per number of hospitals.

VOLTAGE IN CINEANGIOGRAPHY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A – 59. Descriptive statistics kVp in cine mode reading with NEXT phantom and 0.8 mm copper.

kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	80.2	176	7.6	65	76	79.9	83	125

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).


Table A – 60. Frequency distribution for range of kVp in cine mode reading with NEXT phantom and 0.8 mm copper.

kVp	Frequency	Percent	Cumulative
			percent
60-70	6	3.4	3.4
70.1-80	82	46.6	50.0
80.1-90	72	40.9	90.9
90.1-100	14	8.0	98.9
100.1-110	0	0	98.9
110.1-120	1	0.6	99.5
120.1 +	1	0.6	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).

VOLTAGE IN CINEANGIOGRAPHY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 43. Range of kVp in cine mode reading with NEXT phantom and 0.8 mm copper per number of hospitals.

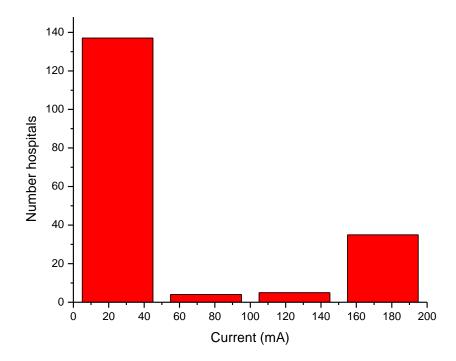
CURRENT IN THE MOST USED FLUOROSCOPY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A – 61. Descriptive statistics for current in fluoroscopy mode reading with NEXT phantom and 0.8 mm copper.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	47.6	181	66.1	2.3	8.8	11.8	50.0	200.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).


Table A – 62. Frequency distribution for range of current in fluoroscopy mode reading with NEXT phantom and 0.8 mm copper.

mA	Frequency	Percent	Cumulative percent
0-50	137	75.7	75.7
50.1-100	4	2.2	77.9
100.1-150	5	2.8	80.7
150.1-200	35	19.3	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

CURRENT IN THE MOST USED FLUOROSCOPY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Figure A - 44. Range of current in fluoroscopy mode reading with NEXT phantom and 0.8 mm copper per number of hospitals.

CURRENT IN CINEANGIOGRAPHY MODE READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Table A – 63. Descriptive statistics for current in cine mode reading with NEXT phantom and 0.8 mm copper.

mA	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	463.0	176	323.9	3.3	76.6	609.8	752.5	996.0

Reference: Surveyor Worksheet (Table 1).

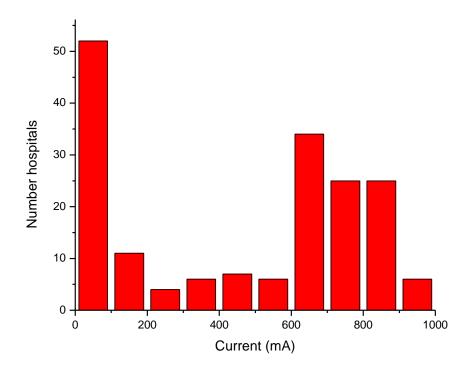

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 64. Frequency distribution for range of current in cine mode reading with NEXT phantom and 0.8 mm copper.

mA	Frequency	Percent	Cumulative
			percent
0-100	52	29.5	29.5
100.1-200	11	6.3	35.8
200.1-300	4	2.3	38.1
300.1-400	6	3.4	41.5
400.1-500	7	4.0	45.5
500.1-600	6	3.4	48.9
600.1-700	34	19.3	68.2
700.1-800	25	14.2	82.4
800.1-900	25	14.2	96.6
900.1-1000	6	3.4	100.0

Reference: Surveyor Worksheet (Table 1).

CURRENT IN CINEANGIOGRAPHY MODE, READING WITH THE NEXT PHANTOM AND 0.8 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 45. Range of current in cine mode reading with NEXT phantom and 0.8 mm copper per number of hospitals.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A – 65. Descriptive statistics for exposure rate in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.

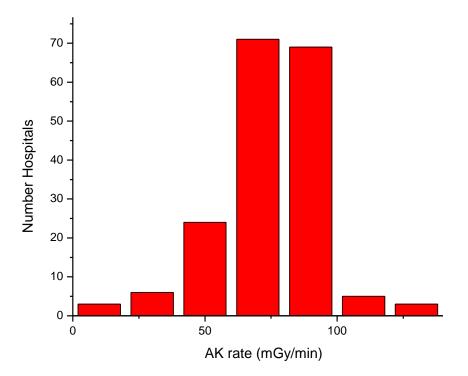
AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	82.4	181	85.4	8.4	66.9	78.0	86.1	1017.4

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Table A – 66. Frequency distribution for range of exposure rate in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.


AK rate	Frequency	Percent	Cumulative percent
0-20	3	1.7	1.7
20.1-40	6	3.3	5.0
40.1-60	24	13.3	18.3
60.1-80	71	39.2	57.5
80.1-100	69	38.1	95.6
100.1-120	5	2.8	98.4
120.1 +	3	1.7	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Figure A – 46. Range of exposure rate in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A – 67. Descriptive statistics for exposure rate in cine mode measured with NEXT phantom and 1.5 mm copper.

AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	807.3	176	383.0	14.0	587.4	739.0	965.6	2826.1

Reference: Surveyor Worksheet (Table 1).

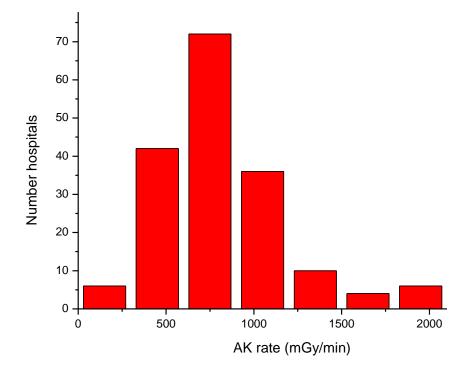

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 68. Frequency distribution for range of exposure rate in cine mode measured with NEXT phantom and 1.5 mm copper.

AK rate	Frequency	Percent	Cumulative
			percent
0-300	6	3.4	3.4
300.1-600	42	23.9	27.3
600.1-900	72	40.9	68.2
900.1-1200	36	20.5	88.7
1200.1-1500	10	5.7	94.4
1500.1-1800	4	2.3	96.7
1800.1 +	6	3.4	100.1

Reference: Surveyor Worksheet (Table 1).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 47. Range of exposure rate in cine mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A - 69. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.

kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	103.0	181	12.4	70	94	104	110	125

Reference: Surveyor Worksheet (Table 1).

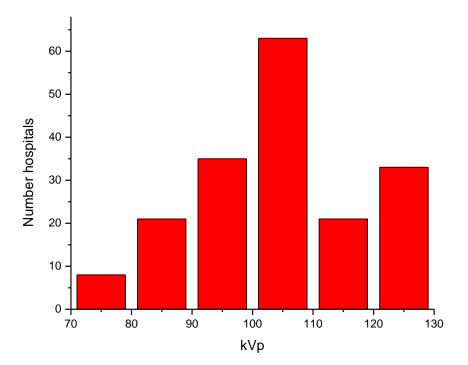

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Table A - 70. Frequency distribution for range of voltage in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.

kVp	Frequency	Percent	Cumulative
			percent
70.1-80	8	4.4	4.4
80.1-90	21	11.6	16.0
90.1-100	35	19.3	35.3
<mark>100.1-110</mark>	63	34.8	70.1
110.1-120	21	11.6	81.7
120.1 +	33	18.2	99.9

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Figure A – 48. Range of voltage in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A – 71. Descriptive statistics for voltage in cine mode measured with NEXT phantom and 1.5 mm copper.

kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	89.7	176	9.1	72	84	89	95	120

Reference: Surveyor Worksheet (Table 1).

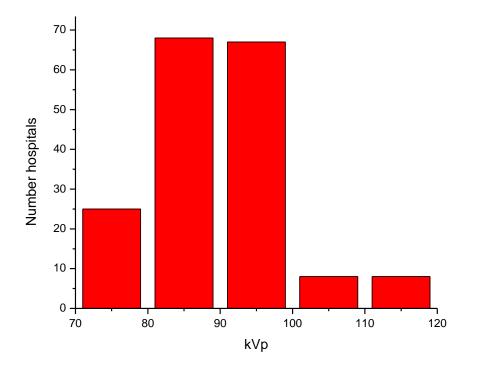

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 72. Frequency distribution for range of voltage in cine mode measured with NEXT phantom and 1.5 mm copper.

kVp	Frequency	Percent	Cumulative percent
70.1-80	25	14.2	14.2
80.1-90	68	38.6	52.8
90.1-100	67	38.1	90.9
100.1-110	8	4.5	95.4
110.1-120	8	4.5	99.9

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 49. Range of voltage in cine mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A – 73. Descriptive statistics for current in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.

ſ	mA	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
		44.3	180	64.2	2.1	7.3	10.1	48.0	200.0

Reference: Surveyor Worksheet (Table 1).

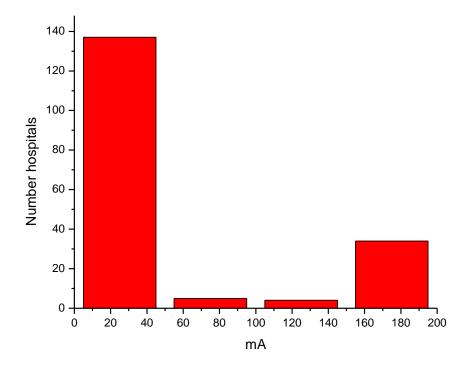

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Table A – 74. Frequency distribution for range of current in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper.

mA	Frequency	Percent	Cumulative percent
0-50	137	76.1	76.1
50.1-100	5	2.8	78.9
100.1-150	4	2.2	81.1
150.1-200	34	18.9	100.0

Reference: Surveyor Worksheet (Table 1).

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 180. Missing data = 19 (not entered by the surveyors).

Figure A - 50. Range of current in fluoroscopy mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

Table A - 75. Descriptive statistics for current in cine mode measured withNEXT phantom and 1.5 mm copper.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	477.9	176	341.2	3	72	592.5	816	915

Reference: Surveyor Worksheet (Table 1).

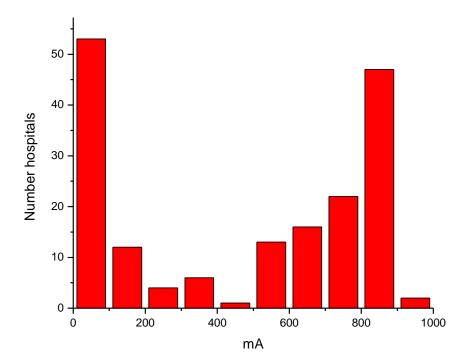

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 76. Frequency distribution for range of current in cine mode measured with NEXT phantom and 1.5 mm copper.

mA	Frequency	Percent	Cumulative percent
0-100	53	30.1	30.1
100.1-200	12	6.8	36.9
200.1-300	4	2.3	39.2
300.1-400	6	3.4	42.6
400.1-500	1	0.6	43.2
500.1-600	13	7.4	50.6
600.1-700	16	9.1	59.7
700.1-800	22	12.5	72.2
800.1-900	47	26.7	98.9
900.1-1000	2	1.1	100.0

Reference: Surveyor Worksheet (Table 1).

CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 1.5 mm COPPER (Cu) IN THE BEAM

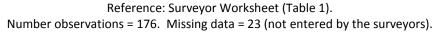


Figure A – 51. Range of current in cine mode measured with NEXT phantom and 1.5 mm copper per number of hospitals.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A – 77. Descriptive statistics for exposure in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.

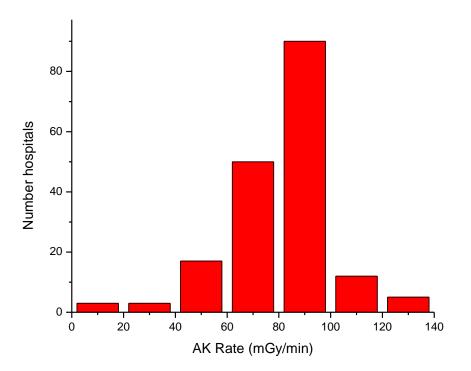
AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	92.0	180	99.0	8.5	71.0	82.9	91.1	960.9

Reference: Surveyor Worksheet (Table 1).

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Table A – 78. Frequency distribution for range of exposure in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.


AK rate	Frequency	Percent	Cumulative
			percent
0-20	3	1.7	1.7
0-20	5	1.7	1.7
20.1-40	3	1.7	3.4
40.1-60	17	9.4	12.8
60.1-80	50	27.8	40.6
80.1-100	90	50.0	90.6
100.1-120	12	6.7	97.3
120.1 +	5	2.8	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 180. Missing data = 19 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image distance (SID) and the exposure rate was measured at 1 cm above the table top. No inverse-square correction was performed.

Figure A – 52. Range of exposure in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper per number of hospitals.

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A - 79. Descriptive statistics for exposure rate in cine mode with NEXT
phantom and 2.3 mm copper.

AK rate	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	1025.1	176	640.5	12.4	777.6	913.3	1177.5	7432.6

Reference: Surveyor Worksheet (Table 1).

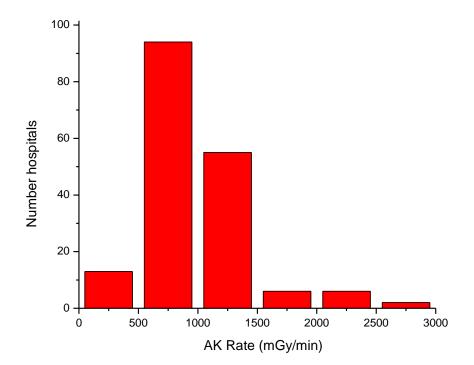

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A - 80. Frequency distribution for range of exposure rate in cine mode with NEXT phantom and 2.3 mm copper.

AK rate	Frequency	Percent	Cumulative percent
0-500	13	7.4	7.4
500.1-1000	94	53.4	60.8
1000.1-1500	55	31.3	92.1
1500.1-2000	6	3.4	95.5
2000.1-2500	6	3.4	98.9
2500.1 +	2	1.1	100.0

Reference: Surveyor Worksheet (Table 1).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 53. Range of exposure rate in cine mode with NEXT phantom and 2.3 mm copper per number of hospitals.

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A – 81. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.

kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	112.0	180	10.1	84.0	107.5	115.0	120.0	125.0

Reference: Surveyor Worksheet (Table 1).

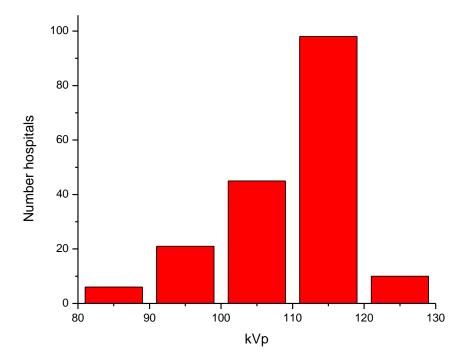

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Table A – 82. Frequency distribution for range of voltage in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.

kVp	Frequency	Percent	Cumulative percent
80-90	6	3.3	3.3
90.1-100	21	11.7	15.0
100.1-110	45	25.0	40.0
110.1-120	98	54.4	94.4
120.1-130	10	5.6	100.0

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 180. Missing data = 19 (not entered by the surveyors).

Figure A – 54. Range of voltage in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper per number of hospitals.

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A – 83. Descriptive statistics for voltage in cineangiography mode measured with NEXT phantom and 2.3 mm copper.

kVp	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	99.0	176	10.5	73.9	93.0	98.0	104.0	125.0

Reference: Surveyor Worksheet (Table 1).

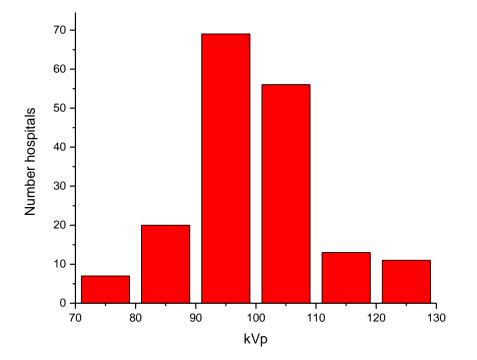

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 84. Frequency distribution for range of voltage in cineangiography mode measured with NEXT phantom and 2.3 mm copper.

kVp	Frequency	Percent	Cumulative
			percent
	_		
70-80	7	4.0	4.0
80.1-90	20	11.4	15.4
90.1-100	69	39.2	54.6
100.1-110	56	31.8	86.4
110.1-120	13	7.4	93.8
120.1-130	11	6.3	100.1

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 55. Range of voltage in cineangiography mode measured with NEXT phantom and 2.3 mm copper per number of hospitals.

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A – 85. Descriptive statistics for current in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.

ſ	mA	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
		41.4	179	59.5	2.2	6.8	8.5	50.0	190.0

Reference: Surveyor Worksheet (Table 1).

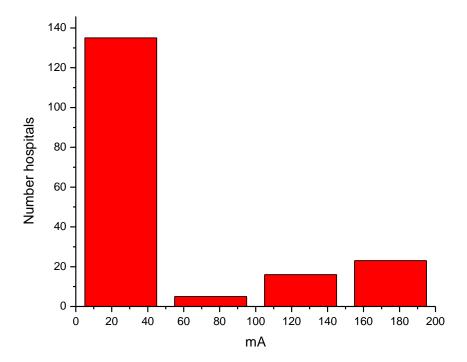

Number observations = 179. Missing data = 20 (not entered by the surveyors).

Table A – 86. Frequency distribution for range of current in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper.

mA	Frequency	Percent	Cumulative percent
0-50	135	75.4	75.4
50.1-100	5	2.8	78.2
100.1-150	16	8.9	87.1
150.1-200	23	12.8	99.9

Reference: Surveyor Worksheet (Table 1).

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 179. Missing data = 20 (not entered by the surveyors).

Figure A – 56. Range of current in fluoroscopy mode measured with NEXT phantom and 2.3 mm copper per number of hospitals.

CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Table A – 87. Descriptive statistics for current in cine mode measured with NEXT phantom and 2.3 mm copper.

mA	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	462.3	175	325.0	4.1	73.0	555.0	766.0	1000.0

Reference: Surveyor Worksheet (Table 1).

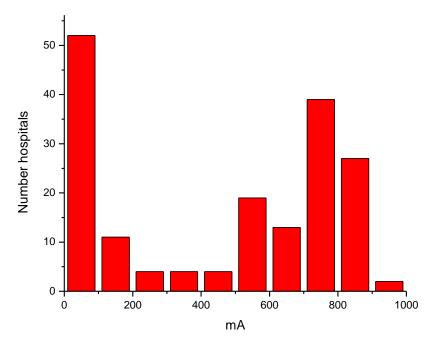

Number observations = 175. Missing data = 24 (not entered by the surveyors).

Table A – 88. Frequency distribution for current in cine mode measured with NEXT phantom and 2.3 mm copper.

mA	Frequency	Percent	Cumulative percent
0-100	52	29.7	29.7
100.1-200	11	6.3	36.0
200.1-300	4	2.3	38.3
300.1-400	4	2.3	40.6
400.1-500	4	2.3	42.9
500.1-600	19	10.9	53.8
600.1-700	13	7.4	61.2
700.1-800	39	22.3	83.5
800.1-900	27	15.4	98.9
900.1-1000	2	1.1	100.0

Reference: Surveyor Worksheet (Table 1).

CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 2.3 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 175. Missing data = 24 (not entered by the surveyors).

Figure A - 57. Range of current in cine mode measured with NEXT phantom and 2.3 mm copper per number of hospitals.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Table A – 89. Descriptive statistics for exposure rate in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

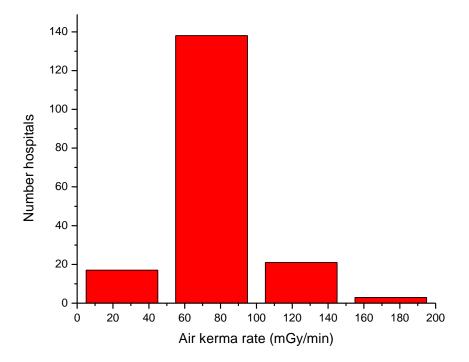
AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	92.6	179	99.1	8.6	74.1	85.2	93.3	1045.6

Reference: Surveyor Worksheet (Table 1).

Number observations = 179. Missing data = 20 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom and copper. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

Table A – 90. Frequency distribution for range of exposure rate in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.


AK rate	Frequency	Percent	Cumulative percent
0-50	17	9.5	9.5
50.1-100	138	77.1	86.6
100.1-150	21	11.7	98.3
150.1 +	3	1.7	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 179. Missing data = 20 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom and copper. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 179. Missing data = 20 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom and copper. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

Figure A – 58. Range of exposure in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Table A – 91. Descriptive statistics for exposure rate in cine mode measured with NEXT phantom and 3.1 mm copper.

AK	rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy	//min)	1180.7	176	499.5	14.6	874.7	1092.7	1413.0	2788.4

Reference: Surveyor Worksheet (Table 1).

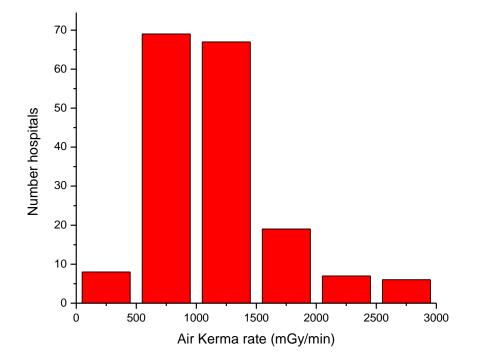

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 92. Frequency distribution for range of exposure rate in cine mode measured with NEXT phantom and 3.1 mm copper.

AK rate	Frequency	Percent	Cumulative
			percent
0-500	8	4.5	4.5
500.1-1000	69	39.2	43.7
1000.1-1500	67	38.1	81.8
1500.1-2000	19	10.8	92.6
2000.1-2500	7	4.0	96.6
2500.1 +	6	3.4	100.0

Reference: Surveyor Worksheet (Table 1).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

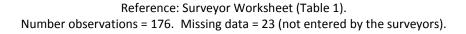


Figure A – 59. Range of exposure rate in cine mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Table A – 93. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

ſ	kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
		115.6	179	10.8	7.7	110.0	120.0	120.0	127.0

Reference: Surveyor Worksheet (Table 1).

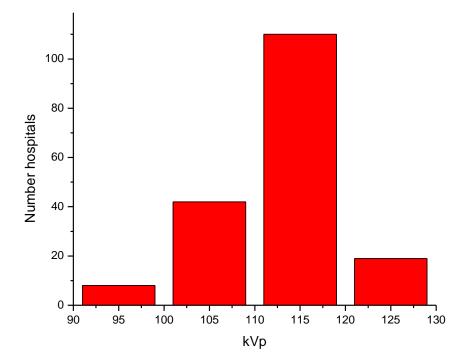

Number observations = 179. Missing data = 20 (not entered by the surveyors).

Table A – 94. Frequency distribution for range of voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

kVp	Frequency	Percent	Cumulative percent
90-100	8	4.5	4.5
100.1-110	42	23.5	28.0
110.1-120	110	61.5	89.5
120.1-130	19	10.6	100.1

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 179. Missing data = 20 (not entered by the surveyors).

Figure A – 60. Range of voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Table A – 95. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	110.1	176	44.4	70	101	106	116	679

Reference: Surveyor Worksheet (Table 1).

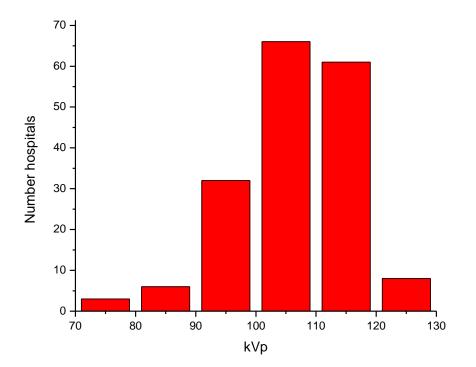

Number observations = 176. Missing data = 23 (not entered by the surveyors).

Table A – 96. Frequency distribution for range of voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

kVp	Frequency	Percent	Cumulative percent
70-80	3	1.7	1.7
80.1-90	6	3.4	5.1
90.1-100	32	18.2	23.3
100.1-110	66	37.5	60.8
110.1-120	61	34.7	95.5
120.1-130	8	4.5	100.0

Reference: Surveyor Worksheet (Table 1).

VOLTAGE IN CINEANGIOGRAPHY MODE, MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A – 61. Range of voltage in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Table A – 97. Descriptive statistics for current in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	42.9	179	76.5	2.1	6.7	8.2	62.7	752.0

Reference: Surveyor Worksheet (Table 1).

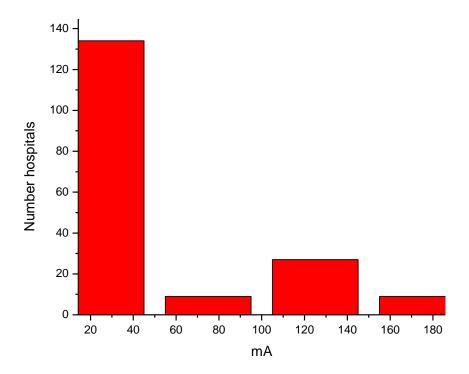

Number observations = 179. Missing data = 20 (not entered by the surveyors).

Table A – 98. Frequency distribution for range of current in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper.

mA	Frequency	Percent	Cumulative percent
0-50	134	74.9	74.9
50.1-100	9	5.0	79.9
100.1-150	27	15.1	95.0
150.1 +	9	5.0	100.0

Reference: Surveyor Worksheet (Table 1).

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 179. Missing data = 20 (not entered by the surveyors).

Figure A - 62. Range of current in fluoroscopy mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

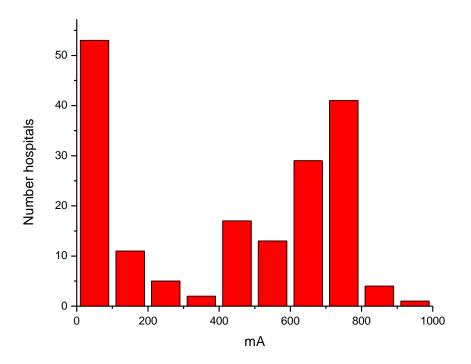
CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu)

Table A – 99. Descriptive statistics for current in cine mode measured with NEXT phantom and 3.1 mm copper.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	427.1	176	298.3	4.6	74.0	502.9	703.5	940.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).


Table A – 100. Frequency distribution for range of current in cine mode measured with NEXT phantom and 3.1 mm copper.

mA	Frequency	Percent	Cumulative percent
0-100	53	30.1	30.1
100.1-200	11	6.3	36.4
200.1-300	5	2.8	39.2
300.1-400	2	1.1	40.3
400.1-500	17	9.7	50.0
500.1-600	13	7.4	57.4
600.1-700	29	16.5	73.9
700.1-800	41	23.3	97.2
800.1-900	4	2.3	99.5
900.1-1000	1	0.6	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 176. Missing data = 23 (not entered by the surveyors).

CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM AND 3.1 mm COPPER (Cu)

Reference: Surveyor Worksheet (Table 1). Number observations = 176. Missing data = 23 (not entered by the surveyors).

Figure A - 63. Range of current in cine mode measured with NEXT phantom and 3.1 mm copper per number of hospitals.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 MM COPPER (CU) AND 2.0 mm LEAD (PB) IN THE BEAM

Table A – 101. Descriptive statistics for exposure rate in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.

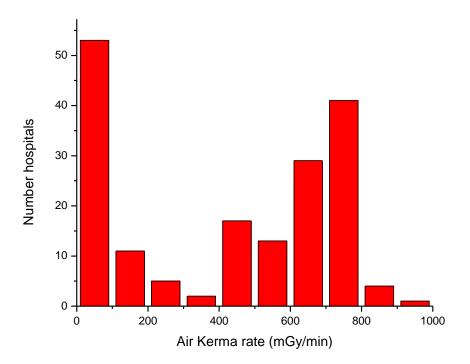
AK rate	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mGy/min)	83.8	151	22.2	14.4	73.5	88.0	95.1	147.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 151. Missing data = 48 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

Table A – 102. Frequency distribution for range of exposure rate in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.


AK rate	Frequency	Percent	Cumulative percent
0-50	16	10.6	10.6
50.1-100	112	74.2	84.8
100.1-150	23	15.2	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 151. Missing data = 48 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

EXPOSURE RATE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 MM COPPER (CU) AND 2.0 mm LEAD (PB) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 151. Missing data = 48 (not entered by the surveyors).

Exposure rate values were measured using the fluoroscopy phantom. The gantry was positioned to minimize source-to-image (SID) and the exposure rate was measured at 1 cm above the table top. No inverse square correction was performed.

Figure A – 64. Range of exposure rate in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet per number of hospitals.

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Table A – 103. Descriptive statistics for exposure rate in cineangiography mode measured with NEXT phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet.

A	AK rate	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
(m	Gy/min)	1551.4	149	695.9	13.6	1158.7	1573.2	1921.7	3928.2

Reference: Surveyor Worksheet (Table 1).

Number observations = 149. Missing data = 50 (not entered by the surveyors).

Table A – 104. Frequency distribution for range of exposure rate in cineangiography mode measured with NEXT phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet.

AK rate	Frequency	Percent	Cumulative percent
			percent
0-500	10	6.7	6.7
500.1-1000	17	11.4	18.1
1000.1-1500	37	24.8	42.9
1500.1-2000	54	36.2	79.1
2000.1-2500	21	14.1	93.2
2500.1 +	10	6.7	99.9

Reference: Surveyor Worksheet (Table 1).

Number observations = 149. Missing data = 50 (not entered by the surveyors).

EXPOSURE RATE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

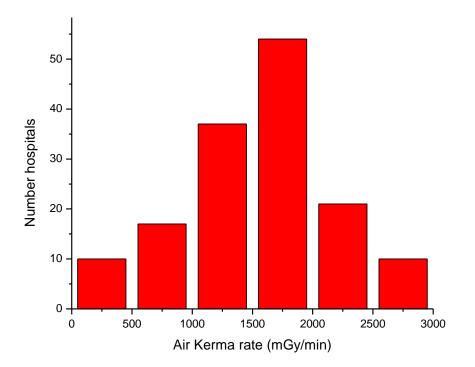


Figure A - 65. Range of exposure rate in cineangiography mode measured with NEXT phantom, 3.1 mm copper (Cu) and one 2.0 mm lead (Pb) sheet per number of hospitals.

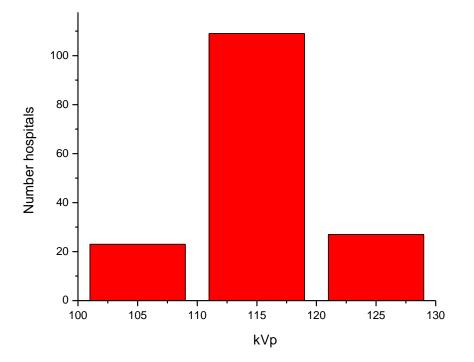
VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Table A - 105. Descriptive statistics for voltage in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.

kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	119.1	159	5.8	74.0	120.0	120.0	120.0	127.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 159. Missing data = 40 (not entered by the surveyors).


Table A - 106. Frequency distribution for range of voltage in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.

kVp	Frequency	Percent	Cumulative percent
0-110	23	14.5	14.5
110.1-120	109	68.6	83.1
120.1 +	27	17.0	100.1

Reference: Surveyor Worksheet (Table 1).

Number observations = 159. Missing data = 40 (not entered by the surveyors).

VOLTAGE IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 159. Missing data = 40 (not entered by the surveyors).

Figure A - 66. Range of voltage in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet per number of hospitals.

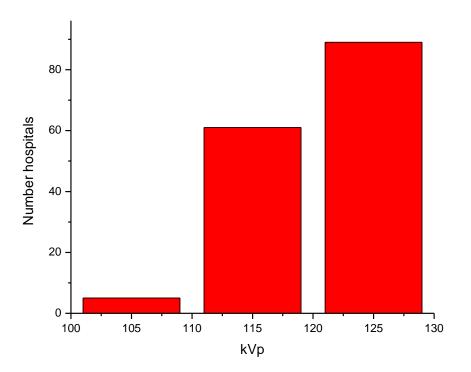
VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 MM LEAD (Pb) IN THE BEAM

Table A - 107. Descriptive statistics for voltage in cine mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.

kVp	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	124.6	155	36.9	70	120	125	125	572

Reference: Surveyor Worksheet (Table 1).

Number observations = 155. Missing data = 44 (not entered by the surveyors).


Table A - 108. Frequency distribution for range of voltage in cine mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet.

kVp	Frequency	Percent	Cumulative percent
0-110	5	3.2	3.2
110.1-120	61	39.4	42.6
120.1 +	89	57.4	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 155. Missing data = 44 (not entered by the surveyors).

VOLTAGE IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 MM LEAD (Pb) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 155. Missing data = 44 (not entered by the surveyors).

Figure A - 67. Range of voltage in cine mode measured with NEXT phantom, 3.1 mm copper and one 2.0 mm lead sheet per number of hospitals.

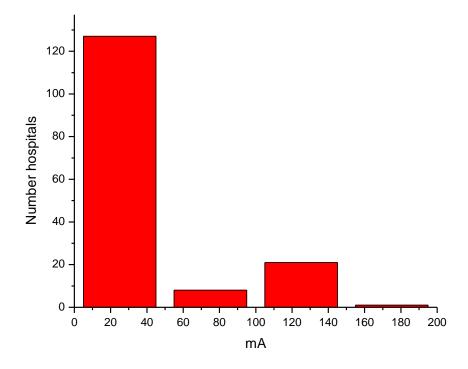
CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Table A – 109. Descriptive statistics for current in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet.

mA	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
	28.3	157	43.3	2.1	6.4	8.0	13.0	154.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 157. Missing data = 42 (not entered by the surveyors).


Table A – 110. Frequency distribution for range of current in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet.

mA	Frequency	Percent	Cumulative percent
0-50	127	80.9	80.9
50.1-100	8	5.1	86.0
100.1-150	21	13.4	99.4
150.1-200	1	0.6	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 157. Missing data = 42 (not entered by the surveyors).

CURRENT IN THE MOST USED FLUOROSCOPY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Reference: Surveyor Worksheet (Table 1). Number observations = 157. Missing data = 42 (not entered by the surveyors).

Figure A – 68. Range of current in fluoroscopy mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet per number of hospitals.

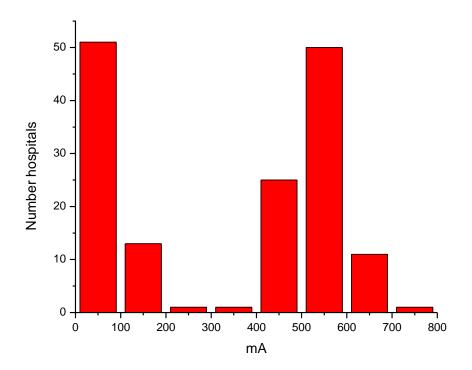
X-RAY TUBE CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

Table A – 111. Descriptive statistics for current in cine mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet.

mA	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	341.8	153	234.3	5.7	80.0	426.0	572.0	752.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 153. Missing data = 46 (not entered by the surveyors).


Table A – 112. Frequency distribution for range of current in cine mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet.

mA	Frequency	Percent	Cumulative percent
0-100	51	33.3	33.3
100.1-200	13	8.5	41.8
200.1-300	1	0.7	42.5
300.1-400	1	0.7	43.2
400.1-500	25	16.3	59.5
500.1-600	50	32.6	92.1
600.1-700	11	7.2	99.3
700.1-800	1	0.7	100.0

Reference: Surveyor Worksheet (Table 1).

Number observations = 153. Missing data = 46 (not entered by the surveyors).

X-RAY TUBE CURRENT IN CINEANGIOGRAPHY MODE MEASURED WITH THE NEXT PHANTOM, 3.1 mm COPPER (Cu) AND 2.0 mm LEAD (Pb) IN THE BEAM

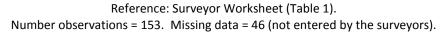


Figure A - 69. Range of current in cine mode measured with NEXT phantom, 3.1 mm copper thickness and one 2.0 mm lead sheet per number of hospitals.

NUMBER OF VISIBLE MESHES IN FLUOROSCOPY MODE

Table A – 113. Descriptive statistics for number of visible meshes in fluoroscopy mode.

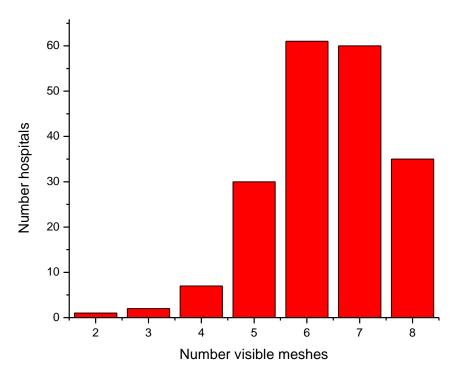
Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
meshes								
visible	6.4	196	1.2	2	6	6	7	8

Reference: Surveyor Worksheet (30).

Number observations = 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (used to measure image resolution) was determined using the image quality fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Table A – 114.	Frequency distribution for number of visible meshes in
	fluoroscopy mode.


Number of meshes visible	Frequency	Percent	Cumulative percent
2	1	0.5	0.5
3	2	1.0	1.5
4	7	4.6	5.1
5	30	15.3	20.4
6	61	31.1	51.5
7	60	30.6	82.1
8	35	17.9	100.0

Reference: Surveyor Worksheet (30).

Number observations = 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (used to measure image resolution) was determined using the image quality fluoroscopy test tool. See Introduction in this report for more information on the test tool.

NUMBER OF VISIBLE MESHES IN FLUOROSCOPY MODE

Reference: Surveyor Worksheet (30). Number observations = 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (used to measure image resolution) was determined using the image quality fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Figure A – 70. Number of visible meshes in fluoroscopy mode per number of hospitals.

NUMBER OF VISIBLE HOLES IN FLUOROSCOPY MODE

Table A – 115. Descriptive statistics for number of visible holes in fluoroscopy mode.

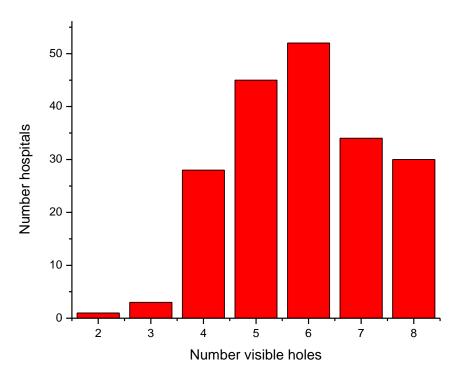
Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
holes								
visible	5.9	193	1.4	2	5	6	7	8

Reference: Surveyor Worksheet (31).

Number observations = 193. Missing data = 6 (not entered by the surveyors).

The number of visible holes (used to measure image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Table A – 116. Frequency distribution for range of number of visible holes in fluoroscopy mode.


Number holes visible	Frequency	Percent	Cumulative percent
2	1	0.5	0.5
3	3	1.6	2.1
4	28	14.5	16.6
5	45	23.3	39.9
6	52	26.9	66.8
7	34	17.6	84.4
8	30	15.5	99.9

Reference: Surveyor Worksheet (31).

Number observations = 193. Missing data = 6 (not entered by the surveyors).

The number of visible holes (used to measure image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

NUMBER OF VISIBLE HOLES IN FLUOROSCOPY MODE

Reference: Surveyor Worksheet (31). Number observations = 193. Missing data = 6 (not entered by the surveyors).

The number of visible holes (used to measure image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Figure A - 71. Number of visible holes in fluoroscopy mode per number of hospitals.

NUMBER OF VISIBLE MESHES IN CINEANGIOGRAPHY MODE

Table A – 117. Descriptive statistics for number of visible meshes in cine mode.

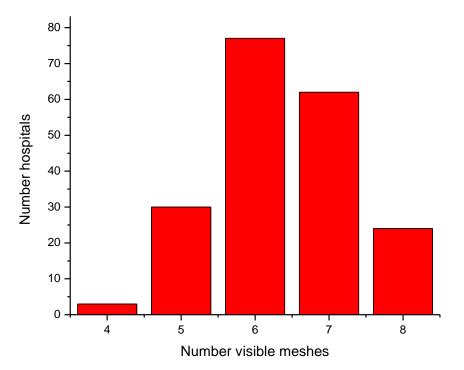
Γ	Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
	meshes								
	visible	6.4	196	0.9	4	6	6	7	8

Reference: Surveyor Worksheet (32).

Number observations= 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (image resolution) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Table A – 118.	Frequency distribution for number of visible meshes in cine
	mode.


Number of meshes visible	Frequency	Percent	Cumulative percent
4	3	1.5	1.5
5	30	15.3	16.8
6	77	39.3	56.1
7	62	31.6	87.7
8	24	12.2	99.9

Reference: Surveyor Worksheet (32).

Number observations= 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (image resolution) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

NUMBER OF VISIBLE MESHES IN CINEANGIOGRAPHY MODE

Reference: Surveyor Worksheet (32). Number observations= 196. Missing data = 3 (not entered by the surveyors).

The number of visible meshes (image resolution) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Figure A - 72. Number of visible meshes in cine mode per number of hospitals.

NUMBER VISIBLE HOLES IN CINEANGIOGRAPHY MODE

Table A – 119. Descriptive statistics for number of visible holes in cine mode.

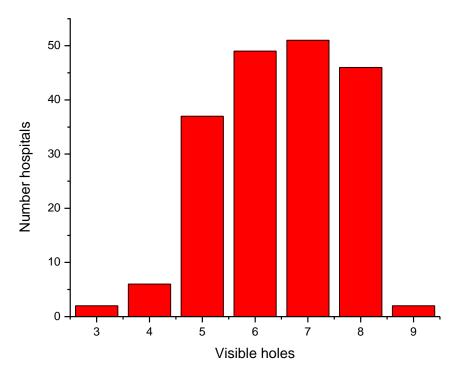
Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
holes								
	6.5	193	1.2	3	6	7	7	9

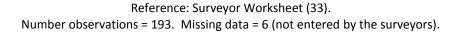
Reference: Surveyor Worksheet (33).

Number observations = 193. Missing data = 6 (not entered by the surveyors).

The number of visible holes (image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Table A – 120. Frequency distribution for number of visible holes in cine mode.


Number holes	Frequency	Percent	Cumulative
			percent
3	2	1.0	1.0
4	6	3.1	4.1
5	37	19.2	23.3
6	49	25.4	48.7
7	51	26.4	75.1
8	46	23.8	99.0
9	2	1.0	100.0


Reference: Surveyor Worksheet (33).

Number observations = 193. Missing data = 6 (not entered by the surveyors).

The number of visible holes (image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

NUMBER VISIBLE HOLES IN CINEANGIOGRAPHY MODE

The number of visible holes (image contrast) was determined using the fluoroscopy test tool. See Introduction in this report for more information on the test tool.

Figure A – 73. Number of visible holes in cine mode per number of hospitals.

MEASURED HALF-VALUE LAYER (HVL)

Table A – 121. Descriptive statistics for measured HVL value [(mm aluminum(Al)].

HVL	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
(mm Al)	5.3	187	1.3	1.9	4.7	5.0	6.1	10.2

Reference: Surveyor Worksheet (34 - 40).

Number observations = 187. Missing data = 12 (not entered by the surveyors).

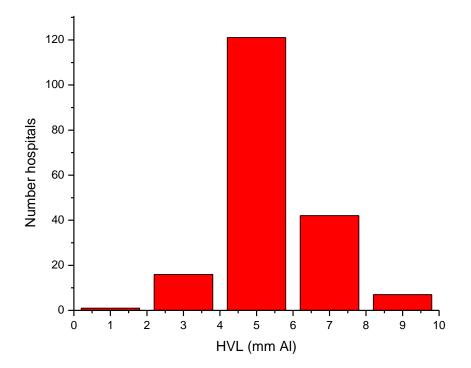
The aluminum half-value layer (HVL) was calculated by measuring five exposure rates:

Exposure rate with no Al in the beam Exposure rate with 2 mm Al in the beam Exposure rate with 4 mm Al in the beam Exposure rate with 6 mm Al in the beam

Exposure rate with 8 mm Al in the beam

An Excel program was used to compute the final HVL value.

Table A – 122. Frequency distribution for range of measured HVL value [(mm aluminum(Al)].


HVL (mm Al)	Frequency	Percent	Cumulative percent
0-2.0	1	0.5	0.5
2.1-4.0	16	8.6	9.1
4.1-6.0	121	64.7	73.8
6.1-8.0	42	22.5	96.3
8.0 +	7	3.7	100.0

Reference: Surveyor Worksheet (34 – 40).

Number observations = 187. Missing data = 12 (not entered by the surveyors).

The aluminum half-value layer (HVL) was calculated by measuring five exposure rates: Exposure rate with no Al in the beam Exposure rate with 2 mm Al in the beam Exposure rate with 4 mm Al in the beam Exposure rate with 6 mm Al in the beam Exposure rate with 8 mm Al in the beam An Excel program was used to compute the final HVL value.

MEASURED HALF-VALUE LAYER (HVL)

Reference: Surveyor Worksheet (34 - 40). Number observations = 187. Missing data = 12 (not entered by the surveyors).

The aluminum half-value layer (HVL) was calculated by measuring five exposure rates: Exposure rate with no Al in the beam Exposure rate with 2 mm Al in the beam Exposure rate with 4 mm Al in the beam Exposure rate with 6 mm Al in the beam Exposure rate with 8 mm Al in the beam An Excel program was used to compute the final HVL value.

Figure A - 74. Measured HVL value (mm Al) range per number of hospitals.

APPENDIX B - DATA FROM FACILITY QUESTIONNAIRE

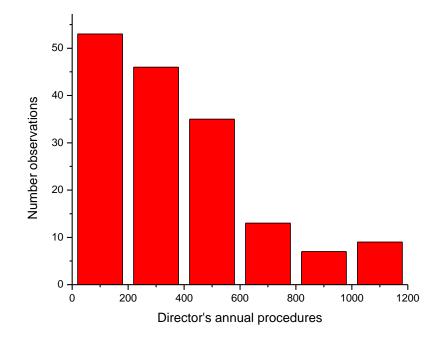
ANNUAL NUMBER OF INVASIVE PROCEDURES PERFORMED BY THE DEPARTMENT DIRECTOR

Table B – 1. Descriptive statistics for number of invasive procedures performed annually by the department director.

Number	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
annual								
invasive	444	163	527	0	185	337	521	4437
procedures								

Reference: Facility Questionnaire (11).

Number observations = 163. Missing data = 36 (not entered by the surveyors).


Table B – 2. Frequency distribution for range of number of invasive procedures performed annually by the department director.

	1	1	
Number annual	Frequency	Percent	Cumulative
invasive procedures			percent
0-200	53	32.5	32.5
201-400	46	28.2	60.7
401-600	35	21.5	82.2
601-800	13	8.	90.2
801-1000	7	4.3	94.5
1001 +	9	5.5	100.0

Reference: Facility Questionnaire (11).

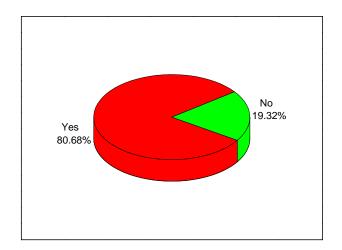
Number observations = 163. Missing data = 36 (not entered by the surveyors).

ANNUAL NUMBER OF INVASIVE PROCEDURES PERFORMED BY THE DEPARTMENT DIRECTOR

Reference: Facility Questionnaire (11). Number observations = 163. Missing data = 36 (not entered by the surveyors).

Figure B – 1. Range of number of invasive procedures performed annually by the department director per number of observations.

PROCEDURES OTHER THAN CARDIAC PERFORMED IN THE DEPARTMENT


Table B – 3. Frequency distribution for procedures other than cardiac performed in the department.

Procedures other	Frequency	Percent	Cumulative
than cardiac performed	count		percent
Y	142	80.7	80.7
N	34	19.3	100.0

Reference: Facility Questionnaire (12).

Number observations = 176. Missing data = 19 (not entered by the surveyors).

Department personnel must indicate (Y/N) whether invasive diagnostic or interventional fluoroscopic procedures other than cardiac are performed in the department.

Reference: Facility Questionnaire (12). Number observations = 176. Missing data = 19 (not entered by the surveyors).

Department personnel must indicate (Y/N) whether invasive diagnostic or interventional fluoroscopic procedures other than cardiac are performed in the department.

Figure B - 2. Percent performing procedures other than cardiac in the department.

NUMBER OF CARDIOLOGISTS IN THE DEPARTMENT

Table B – 4. Descriptive statistics for number of cardiologists in the department performing cardiac procedures.

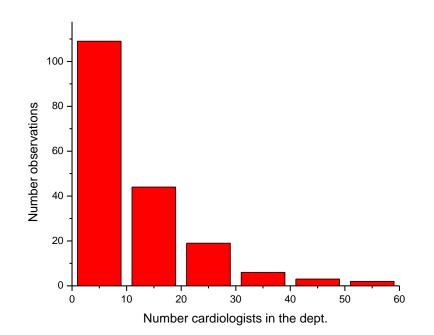
Cardiologists	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
in department	12.4	183	11.5	1	4	8	17	74
department			-			_		

Reference: Facility Questionnaire (13 a).

Number observations = 183. Missing data = 16 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiologist working part time.

Table B – 5.	Frequency distribution for range of number of cardiologists in
	the department performing cardiac procedures.


Number cardiologists	Frequency	Percent	Cumulative
			percent
1-10	109	59.6	59.6
11-20	44	24.0	83.6
21-30	19	10.4	94.0
31-40	6	3.3	97.3
41-50	3	1.6	98.9
51 +	2	1.1	100.0

Reference: Facility Questionnaire (13 a).

Number observations = 183. Missing data = 16 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiologist working part time.

NUMBER OF CARDIOLOGISTS IN THE DEPARTMENT

Reference: Facility Questionnaire (13 a). Number observations = 183. Missing data = 16 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiologist working part time.

Figure B – 3. Range of number of cardiologists in the department performing cardiac procedures per number of observations.

NUMBER OF VASCULAR SURGEONS IN THE DEPARTMENT

Table B – 6. Descriptive statistics for number vascular/cardio-thoracic surgeons in the department.

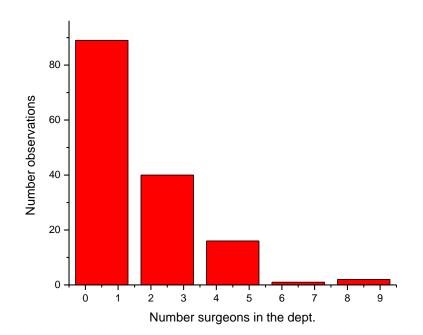
Vascular	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
surgeons in	1 47	140	2.02	0	0	1	2	12
department	1.47	148	2.03	0	0	1	2	13

Reference: Facility Questionnaire (13 b).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a vascular surgeon working part time.

Table B – 7. Frequency distribution for range number vascular/cardio-thoracic surgeons in the department.


Number vascular	Frequency	Percent	Cumulative
surgeons			percent
0-1	89	60.1	60.1
2-3	40	27.0	87.1
4-5	16	10.8	97.9
6-7	1	0.7	98.6
8 +	2	1.4	100.0

Reference: Facility Questionnaire (13 b).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a vascular surgeon working part time.

NUMBER OF VASCULAR SURGEONS IN THE DEPARTMENT

Reference: Facility Questionnaire (13 b). Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a vascular surgeon working part time.

Figure B – 4. Range of number of vascular/cardio-thoracic surgeons in the department per number of observations.

NUMBER OF INTERVENTIONAL RADIOLOGISTS IN THE DEPARTMENT

Table B – 8. Descriptive statistics for number of interventional radiologists in the department.

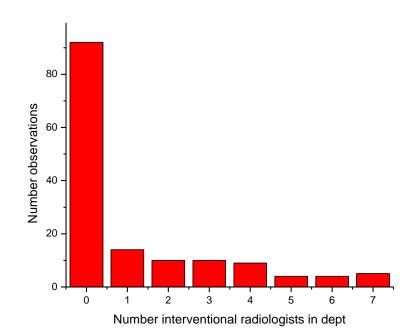
Interventional	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
radiologists in								
the	1.32	148	2.38	0	0	0	2	15
department								

Reference: Facility Questionnaire (13 c).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for an interventional radiologist working part time.

Table B – 9. Frequency distribution for number of interventional radiologists in the department.


Interventional radiologists in the department	Frequency	Percent	Cumulative percent
0	92	62.2	62.2
1	14	9.5	71.7
2	10	6.8	78.5
3	10	6.8	85.3
4	9	6.1	91.4
5	4	2.7	94.1
6	4	2.7	96.8
7	5	3.4	100.2

Reference: Facility Questionnaire (13 c).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for an interventional radiologist working part time.

NUMBER OF INTERVENTIONAL RADIOLOGISTS IN THE DEPARTMENT

Reference: Facility Questionnaire (13 c). Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for an interventional radiologist working part time.

Figure B – 5. Number of interventional radiologists in the department per number of observations.

NUMBER OF NURSES IN THE DEPARTMENT

Table B - 10. Descriptive statistics for number of nurses in the department.

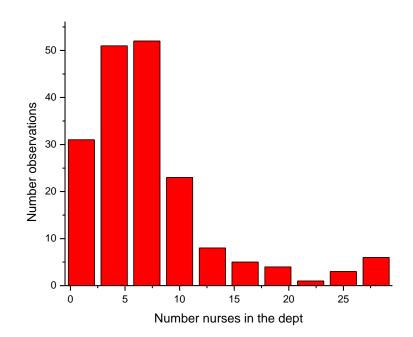
Nurses in	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
department								
	7.92	184	8.03	0	3.5	6.0	9.0	65.0

Reference: Facility Questionnaire (14 a).

Number observations = 184. Missing data = 15 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a nurse working part time.

Table B - 11.	Frequency distribution for range of the number of nurses in the
	department.


Number nurses	Frequency	Percent	Cumulative
			percent
0-2	31	16.8	16.8
3-5	51	27.7	44.5
6-8	52	28.3	72.8
9-11	23	12.5	85.3
12-14	8	4.3	89.6
15-17	5	2.7	92.3
18-20	4	2.2	94.5
21-23	1	0.5	95.0
24-26	3	1.6	96.6
27+	6	3.3	99.9

Reference: Facility Questionnaire (14 a).

Number observations = 184. Missing data = 15 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a nurse working part time.

NUMBER OF NURSES IN THE DEPARTMENT

Reference: Facility Questionnaire (14 a). Number observations = 184. Missing data = 15 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a nurse working part time.

Figure B - 6. Range of number of nurses in the department per number of observations.

OTHER PERSONNEL IN THE DEPARTMENT

Table B – 12. Descriptive statistics for number of other personnel in the department.

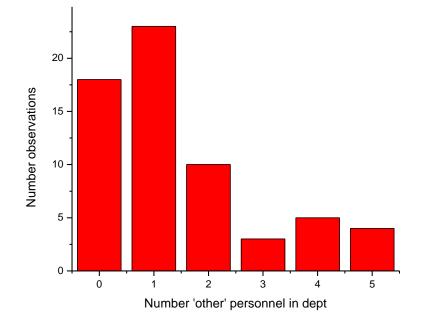
Other	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
personnel								
	1.53	63	1.63	0	0	1	2	7

Reference: Facility Questionnaire (14 b).

Number observations = 63. Missing data = 136 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for staff working part time.

Table B – 13.	Frequency distribution for number of other personnel in the
	department.


Number of other	Frequency	Percent	Cumulative
personnel			percent
0	18	28.6	28.6
1	23	36.5	65.1
2	10	15.9	81.0
3	3	4.8	85.8
4	5	7.9	93.7
5+	4	6.3	100.0

Reference: Facility Questionnaire (14 b).

Number observations = 63. Missing data = 136 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for staff working part time.

OTHER PERSONNEL IN THE DEPARTMENT

Reference: Facility Questionnaire (14 b). Number observations = 63. Missing data = 136 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for staff working part time.

Figure B – 7. Number of other personnel in the department per number of observations.

NUMBER OF CARDIOVASCULAR TECHNOLOGISTS IN THE DEPARTMENT

Table B – 14. Descriptive statistics for number of cardiology/cardiovascular technologists in the department.

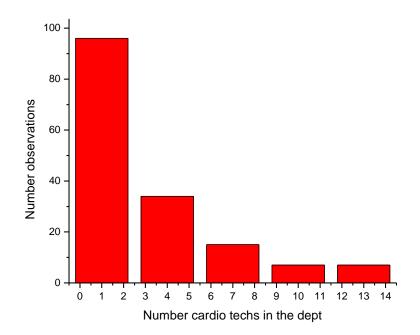
Cardiovascular	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
technologists	3.08	159	4.11	0	0	2	4	29

Reference: Facility Questionnaire (14 c).

Number observations = 159. Missing data = 40 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiovascular technologist working part time.

Table B – 15. Frequency distribution for range of number of cardiology/cardiovascular technologists in the department.


Number cardiovascular technologists	Frequency	Percent	Cumulative percent
0-2	96	60.4	60.4
3-5	34	21.4	81.8
6-8	15	9.4	91.2
9-11	7	4.4	95.6
12 +	7	4.4	100.0

Reference: Facility Questionnaire (14 c).

Number observations = 159. Missing data = 40 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiovascular technologist working part time.

NUMBER OF CARDIOVASCULAR TECHNOLOGISTS IN THE DEPARTMENT

Reference: Facility Questionnaire (14 c). Number observations = 159. Missing data = 40 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a cardiovascular technologist working part time.

Figure B – 8. Range of number of cardiology/cardiovascular technologists in the department per number of observations.

NUMBER OF RADIOLOGIC TECHNOLOGISTS IN THE DEPARTMENT

Table B – 16. Descriptive statistics for number of radiologic technologists in the department.

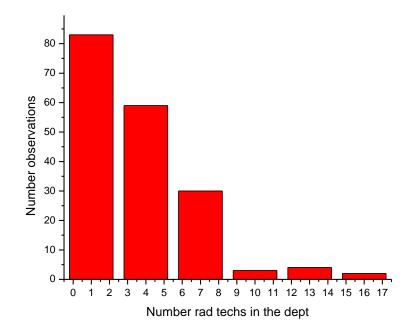
Radiologic	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
technologists								
	3.60	181	3.18	0	1	3	5	21

Reference: Facility Questionnaire (14 d).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a radiological technologist working part time.

Table B – 17. Frequency distribution for range of number of radiologic technologists in the department.


Number radiologic	Frequency	Percent	Cumulative
technologists			percent
0-2	83	45.9	45.9
3-5	59	32.6	78.5
6-8	30	16.6	95.1
9-11	3	1.7	96.8
12-14	4	2.2	99.0
15 +	2	1.1	100.1

Reference: Facility Questionnaire (14 d).

Number observations = 181. Missing data = 18 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a radiological technologist working part time.

NUMBER OF RADIOLOGIC TECHNOLOGISTS IN THE DEPARTMENT

Reference: Facility Questionnaire (14 d). Number observations = 181. Missing data = 18 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a radiological technologist working part time.

Figure B – 9. Range of number of radiologic technologists in the department per number of observations.

NUMBER OF MEDICAL PHYSICISTS EXCLUSIVELY SUPPORTING THE DEPARTMENT

Table B – 18. Descriptive statistics for number of medical physicists exclusively supporting the department.

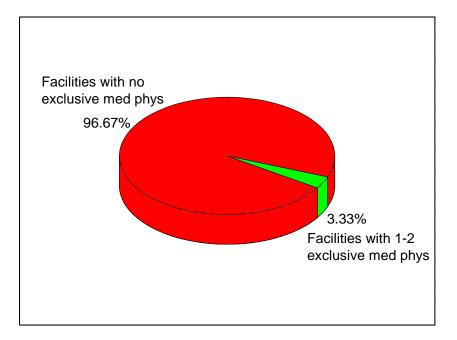
Medical	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
physicists								
exclusively	0.04	120	0.24	0	0	0	0	2
supporting								
department								

Reference: Facility Questionnaire (15a).

Number observations = 120. Missing data = 79 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Table B – 19. Frequency distribution for range of number of medical physicists supporting exclusively the department.


Number medical	Frequency	Percent	Cumulative
physicists exclusively			percent
supporting department			
0	116	96.7	96.7
1-2	4	3.3	100

Reference: Facility Questionnaire (15a).

Number observations = 120. Missing data = 79 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

NUMBER OF MEDICAL PHYSICISTS EXCLUSIVELY SUPPORTING THE DEPARTMENT

Reference: Facility Questionnaire (15a). Number observations = 120. Missing data = 79 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Figure B - 10. Percent of facilities with medical physicists exclusively supporting the department.

NUMBER OF MEDICAL PHYSICISTS IN THE FACILITY

Table B – 20. Descriptive statistics for number of medical physicists providing support throughout the facility.

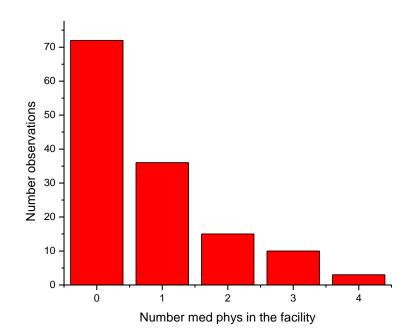
Medical physicists	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
in the	0.81	136	1.11	0	0	0	1	6
facility								

Reference: Facility Questionnaire (15b).

Number observations = 136. Missing data = 63 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Table B – 21. Frequency distribution for number of medical physicists providing support throughout the facility.


Number medical physicists in the facility	Frequency	Percent	Cumulative percent
0	72	52.9	52.9
1	36	26.5	79.4
2	15	11.0	90.4
3	10	7.4	97.8
4 +	3	2.2	100.0

Reference: Facility Questionnaire (15b).

Number observations = 136. Missing data = 63 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

NUMBER OF MEDICAL PHYSICISTS IN THE FACILITY

Reference: Facility Questionnaire (15b). Number observations = 136. Missing data = 63 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Figure B - 11. Number of medical physicists providing support throughout the facility per number of observations.

NUMBER OF MEDICAL PHYSICISTS ON CONTRACT

Table B – 22. Descriptive statistics for number of medical physicists on contract.

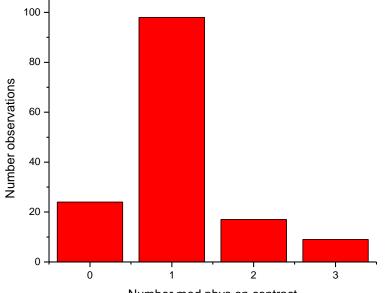
Medical physicists	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
on	1.49	148	0.97	0	1	1	1	6
contract								

Reference: Facility Questionnaire (15c).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Table B – 23. Frequency distribution for number of medical physicists on contract.


Number medical	Frequency	Percent	Cumulative
physicists on contract			percent
0	24	16.2	16.2
1	98	66.2	82.4
2	17	11.5	93.9
3 +	9	6.1	100.0

Reference: Facility Questionnaire (15c).

Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

NUMBER OF MEDICAL PHYSICISTS ON CONTRACT

Number med phys on contract

Reference: Facility Questionnaire (15c). Number observations = 148. Missing data = 51 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Figure B – 12. Number of medical physicists on contract per number of observations.

OTHER MEDICAL PHYSICISTS ON STAFF

Table B – 24. Descriptive statistics for other medical physicists on staff.

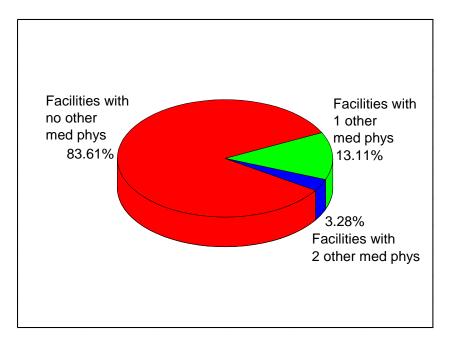
Other type	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
of medical								
physicists	0.20	61	0.48	0	0	0	0	2
on staff								

Reference: Facility Questionnaire (15d).

Number observations = 61. Missing data = 138 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Table B – 25. Frequency distribution for other medical physicists on staff.


Other type of medical	Frequency	Percent	Cumulative
physicists			percent
0	51	83.6	83.6
1	8	13.1	96.7
2	2	3.3	100.0

Reference: Facility Questionnaire (15d).

Number observations = 61. Missing data = 138 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

OTHER TYPE OF MEDICAL PHYSICISTS ON STAFF

Reference: Facility Questionnaire (15d). Number observations = 61. Missing data = 138 (not entered by the surveyors).

Some entries in the questionnaire can be fractional numbers. Example: 0.5 for a medical physicist working part time.

Figure B – 13. Percent of facilities with other medical physicists on staff.

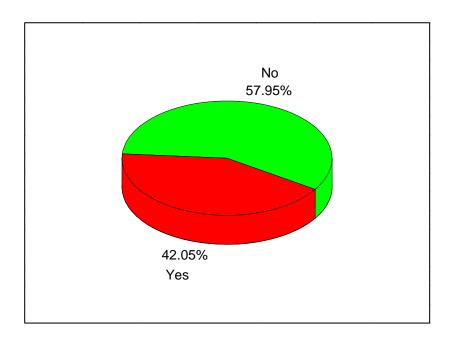

RADIATION SAFETY DUTIES PERFORMED BY MEDICAL PHYSICIST

Table B – 26. Frequency distribution for medical physicist performing radiation safety duties.

Medical physicist performing radiation safety duties	Frequency	Percent	Cumulative percent
Yes	82	42.1	42.1
No	113	57.9	100.0

Reference: Facility Questionnaire (16).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (16). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 14. Percent of medical physicist performing radiation safety duties.

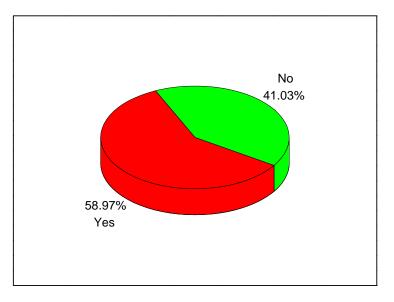

RADIATION SAFETY DUTIES PERFORMED BY RADIATION SAFETY OFFICER

Table B – 27.	Frequency	distribution	for radiation	safety off	ficer performing
		radiation sa	afety duties.		

Radiation safety officer performing radiation safety duties	Frequency	Percent	Cumulative percent
Yes	115	59.0	59.0
No	80	41.0	100.0

Reference: Facility Questionnaire (16a)

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (16a) Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 15. Percent of facilities with radiation safety officer performing radiation safety duties.

NUMBER OF ADULT DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE HOSPITAL ANNUALLY

Table B – 28. Descriptive statistics for annual number of adult DCA procedures performed at hospital.

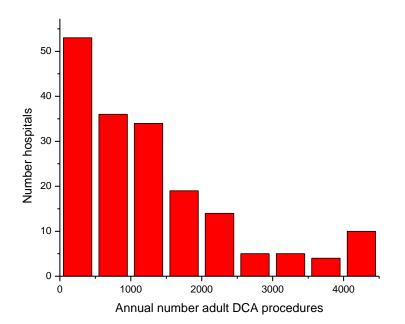
Annual number	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
liamber	1557	180	2966	2	453	1026	1790	36860
adult DCA								

Reference: Facility Questionnaire (17a).

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Data collected for number of adult diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

Table B – 29. Frequency distribution for range of annual number of adult DCA procedures performed at hospital.


Annual number	Frequency	Percent	Cumulative
adult DCA			percent
0-500	53	29.4	29.4
501-1000	36	20.0	49.4
1001-1500	34	18.9	68.3
1501-2000	19	10.6	78.9
2001-2500	14	7.8	86.7
2501-3000	5	2.8	89.5
3001-3500	5	2.8	92.3
3501-4000	4	2.2	94.5
4001 +	10	5.6	100.1

Reference: Facility Questionnaire (17a).

Number observations = 180. Missing data = 19 (not entered by the surveyors).

Data collected for number of adult diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

NUMBER OF ADULT DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE HOSPITAL ANNUALLY

Reference: Facility Questionnaire (17a). Number observations = 180. Missing data = 19 (not entered by the surveyors).

Data collected for number of adult diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

Figure B - 16. Range of annual number of adult DCA procedures performed at hospital per number of hospitals.

NUMBER OF PEDIATRIC DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE HOSPITAL ANNUALLY

Table B – 30. Descriptive statistics for annual number of pediatric DCA procedures performed at hospital.

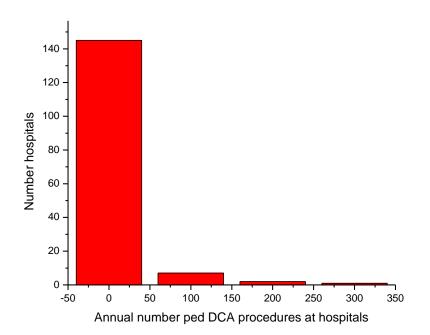
Annual number	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
pediatric DCA	4.3	155	28.6	0	0	0	0	305
DCA								

Reference: Facility Questionnaire (17a).

Number observations = 155. Missing data = 44 (not entered by the surveyors).

Data collected for number of pediatric diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

Table B – 31. Frequency distribution for range of annual number of pediatric DCA procedures performed at hospital.


Annual number pediatric DCA	Frequency	Percent	Cumulative percent
0	145	93.5	93.5
1-100	7	4.5	98.0
101-200	2	1.3	99.3
201 +	1	0.6	99.9

Reference: Facility Questionnaire (17a).

Number observations = 155. Missing data = 44 (not entered by the surveyors).

Data collected for number of pediatric diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

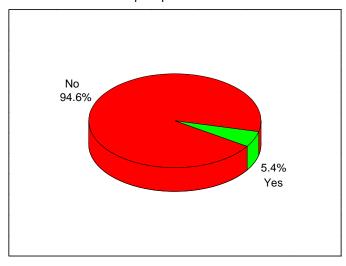
NUMBER OF PEDIATRIC DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PERFORMED AT THE HOSPITAL ANNUALLY

Reference: Facility Questionnaire (17a). Number observations = 155. Missing data = 44 (not entered by the surveyors).

Data collected for number of pediatric diagnostic coronary angiography (DCA) procedures performed in a 12 month interval before the survey.

Figure B - 17. Range of annual number of pediatric DCA procedures performed at hospital per number of hospitals.

FACILITIES PERFORMING DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES ON HOSPITAL ADULT OUTPATIENTS


Table B – 32. Frequency distribution of facilities performing DCA procedures on hospital adult outpatients.

Hospital performs DCA procedures on hospital	Frequency	Percent	Cumulative percent
adult outpatients			
No	105	94.6	94.6
Yes	6	5.4	100.0

Reference: Facility Questionnaire (17b).

Number observations = 111. Missing data = 88 (not entered by the surveyors).

Data collected on number of surveyed facilities that offered diagnostic coronary angiography (DCA) procedures at outpatient locations, in the 12 month interval before the survey. Data refers to DCA procedures offered to hospital patients.

Reference: Facility Questionnaire (17b).

Number observations = 111. Missing data = 88 (not entered by the surveyors).

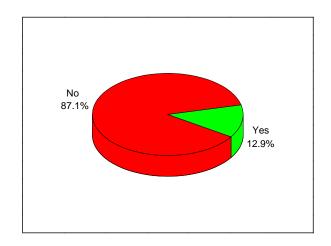
Data collected on number of surveyed facilities that offered diagnostic coronary angiography (DCA) procedures at outpatient locations, in the 12 month interval before the survey. Data refers to DCA procedures offered to hospital patients.

Figure B – 18. Percent of facilities performing DCA procedures on hospital adult outpatients.

ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON HOSPITAL PEDIATRIC OUTPATIENTS

Not enough data available.

DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON NON-HOSPITAL ADULT OUTPATIENTS


Table B – 33. Frequency distribution for DCA procedures performed on nonhospital adult outpatients.

Hospital performs DCA procedures on non- hospital adult outpatients	Frequency	Percent	Cumulative percent
No	54	87.1	87.1
Yes	8	12.9	100.0

Reference: Facility Questionnaire (18a).

Number observations = 62. Missing data = 137 (not entered by the surveyors).

Data collected on number of facilities offering adult diagnostic coronary angiography (DCA) procedures at non-hospital outpatient locations in the 12 month interval before the survey.

Reference: Facility Questionnaire (18a). Number observations = 62. Missing data = 137 (not entered by the surveyors).

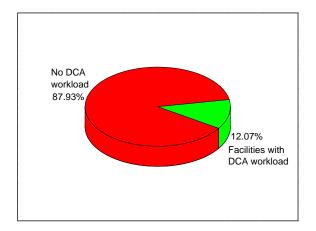
Data collected on number of facilities offering adult diagnostic coronary angiography (DCA) procedures at non-hospital outpatient locations in the 12 month interval before the survey.

Figure B – 19. Percent performing DCA procedures on non-hospital adult outpatients.

ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON NON-HOSPITAL PEDIATRIC OUTPATIENTS

Not enough data available.

ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON HOSPITAL ADULT INPATIENTS


Table B – 34. Frequency distribution for annual DCA procedures performed on hospital adult inpatients.

Facilities offering DCA	Frequency	Percent	Cumulative
procedures for hospital			percent
adult inpatients			
No	51	87.9	87.9
Yes	7	12.1	100.0

Reference: Facility Questionnaire (18b).

Number observations = 58. Missing data = 141 (not entered by the surveyors).

Data collected on number of adult diagnostic coronary angiography (DCA) procedures at hospital inpatient locations in the 12 month interval before the survey.

Reference: Facility Questionnaire (18b). Number observations = 58. Missing data = 141 (not entered by the surveyors).

Data collected on number of adult diagnostic coronary angiography (DCA) procedures at hospital inpatient locations in the 12 month interval before the survey.

Figure B – 20. Percent of facilities offering DCA procedures for hospital adult inpatients.

ANNUAL DIAGNOSTIC CORONARY ARTERIOGRAMS (DCA) PROCEDURES PERFORMED ON HOSPITAL PEDIATRIC INPATIENTS

Not enough data available.

ANNUAL ADULT CARDIAC INVASIVE PROCEDURES PERFORMED AT HOSPITAL

Table B - 35.Descriptive statistics for number of annual adult cardiac
invasive procedures performed at hospital.

Annual	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
number adult								
cardiac	1824	178	1810	0	465	1220	2592	9943
invasive								
procedures								

Reference: Facility Questionnaire (19a).

Number observations = 178. Missing data = 21 (not entered by the surveyors).

Data collected on number of adult cardiac invasive cases procedures at the hospital in the 12 month interval preceding the survey.

Table B - 36. Frequency distribution for range of number of annual adultcardiac invasive procedures performed at hospital.

Annual number adult	Frequency	Percent	Cumulative
cardiac invasive			percent
procedures			
0-1000	77	43.3	43.3
1001-2000	41	23.0	66.3
2001-3000	25	14.0	80.3
3001-4000	12	6.7	87.0
4001-5000	12	6.7	93.7
5001-6000	6	3.4	97.1
6001 +	5	2.8	99.9

Reference: Facility Questionnaire (19a).

Number observations = 178. Missing data = 21 (not entered by the surveyors).

Data collected on number of adult cardiac invasive cases procedures at the hospital in the 12 month interval preceding the survey.

ANNUAL ADULT CARDIAC INVASIVE PROCEDURES PERFORMED AT HOSPITAL

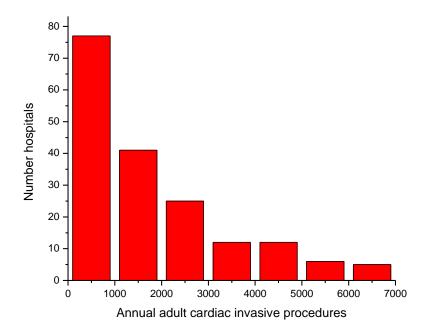


Figure B – 21. Range of number of annual adult cardiac invasive procedures performed at hospital per number of hospitals.

ANNUAL CARDIAC INVASIVE PROCEDURES PERFORMED ON PEDIATRIC PATIENT

Table B – 37. Descriptive statistics for number of annual pediatric cardiac invasive procedures performed at hospital.

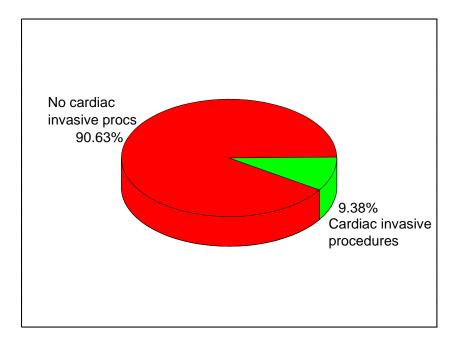
Annual	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
number pediatric cardiac invasive procedures	17.6	128	79.5	0	0	0	0	500

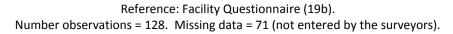
Reference: Facility Questionnaire (19b).

Number observations = 128. Missing data = 71 (not entered by the surveyors).

Data collected on number of pediatric cardiac invasive cases procedures at the hospital in the 12 month interval preceding the survey.

Table B – 38. Frequency distribution for number of annual pediatric cardiac invasive procedures performed at hospital.


Annual number pediatric cardiac invasive procedures	Frequency	Percent	Cumulative percent
0	116	90.6	90.6
1+	12	9.4	100.0


Reference: Facility Questionnaire (19b).

Number observations = 128. Missing data = 71 (not entered by the surveyors).

Data collected on number of pediatric cardiac invasive cases procedures at the hospital in the 12 month interval preceding the survey.

ANNUAL CARDIAC INVASIVE PROCEDURES PERFORMED ON PEDIATRIC PATIENT

Data collected on number of pediatric cardiac invasive cases procedures at the hospital in the 12 month interval preceding the survey.

Figure B – 22. Percent performing pediatric cardiac invasive procedures at the hospital.

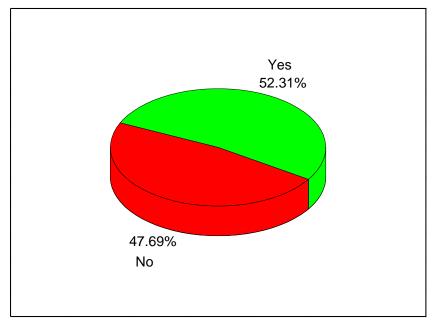

DEPARTMENT FLUOROSCOPY CREDENTIALING PROGRAM

Table B – 39. Frequency distribution for department credentialing program for fluoroscopy equipment operators.

Credentialing program	Frequency	Percent	Cumulative percent
Yes	102	52.3	52.3
No	93	47.7	100.0

Reference: Facility Questionnaire (21).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

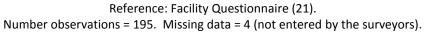


Figure B – 23. Percent of departments with credentialing program for fluoroscopy equipment operators.

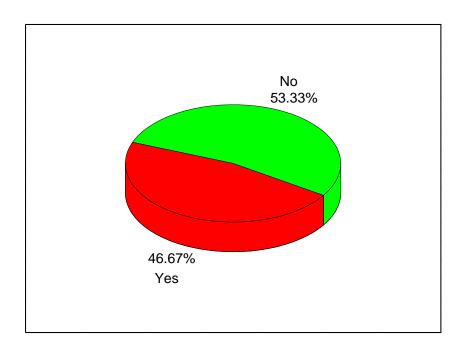

BOARD CERTIFICATION REQUIREMENT

Table B – 40. Frequency distribution for fluoroscopy credentialing program that requires board certification.

Board certification required	Frequency	Percent	Cumulative percent
Yes	91	53.3	53.3
No	104	46.7	100.0

Reference: Facility Questionnaire (21a).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (21a) Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 24. Percent of fluoroscopy credentialing programs that require board certification.

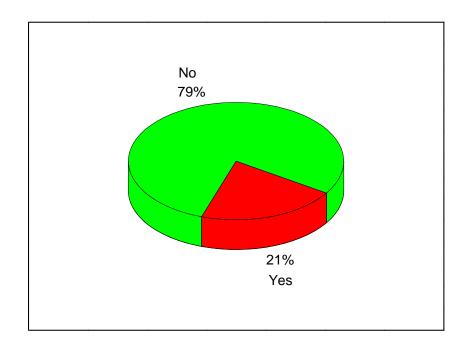

PROBATIONAL PERIOD OF SUPERVISION

Table B – 41. Frequency distribution for fluoroscopy privileging program that requires probationary period.

Probationary period required	Frequency	Percent	Cumulative percent
Yes	41	21.0	21.0
No	154	79.0	100.0

Reference: Facility Questionnaire (21b).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (21b). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 25. Percent of fluoroscopy privileging programs that require probationary period.

ONE-TIME TRAINING FOR OBTAINING PRIVILEGES FOR FLUOROSCOPY

Table B – 42. Frequency distribution for fluoroscopy privileging program that requires a one-time training.

One-time training	Frequency	Percent	Cumulative percent
Yes	40	20.5	20.5
No	155	79.5	100.0

Reference: Facility Questionnaire (21c).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

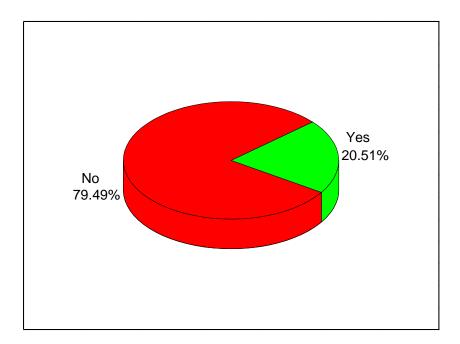


Figure B – 26. Percent of fluoroscopy privileging programs that require a onetime training.

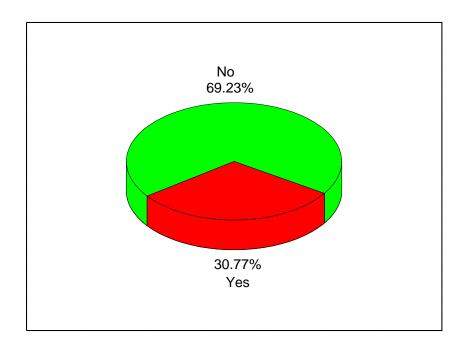

CONTINUING EDUCATION REQUIREMENT FOR MAINTAINING PRIVILEGES IN FLUOROSCOPY

Table B – 43. Frequency distribution for fluoroscopy privileging program that requires continuing education.

Continuing education required	Frequency	Percent	Cumulative percent
Yes	60	30.8	30.8
No	135	69.2	100.0

Reference: Facility Questionnaire (21d).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (21d). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 27. Percent of fluoroscopy privileging programs that require continuing education.

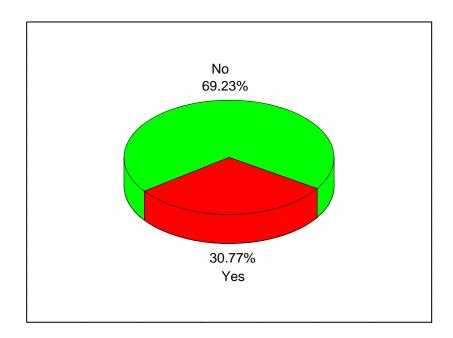

FLUOROSCOPY PRIVILEGING PROGRAM INCLUDES IN-HOUSE LECTURES

Table B – 44. Frequency distribution for fluoroscopy privileging program that encourages in-house lectures.

In-house lectures provided	Frequency	Percent	Cumulative percent
Yes	60	30.8	30.8
No	135	69.2	100.0

Reference: Facility Questionnaire (21e).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (21e). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B - 28. Percent of fluoroscopy privileging programs that encourage inhouse lectures.

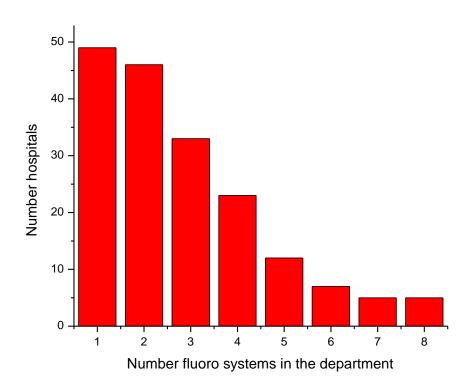
TOTAL NUMBER OF FLUOROSCOPY SYSTEMS IN THE DEPARTMENT

Table B – 45. Descriptive statistics for total number of fluoroscopy systems in the department.

Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
fluoroscopy systems	2.86	180	1.88	1	1	2	4	10

Reference: Facility Questionnaire (22a).

Number observations = 180. Missing data = 19 (not entered by the surveyors).


Table B – 46. Frequency distribution for total number of fluoroscopy systems in the department.

Number fluoroscopy	Frequency	Percent	Cumulative
systems			percent
1	49	27.2	27.2
2	46	25.6	52.8
3	33	18.3	71.1
4	23	12.8	83.9
5	12	6.7	90.6
6	7	3.9	94.5
7	5	2.8	97.3
8+	5	2.8	100.1

Reference: Facility Questionnaire (22a).

Number observations = 180. Missing data = 19 (not entered by the surveyors).

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS IN THE DEPARTMENT

Reference: Facility Questionnaire (22a). Number observations = 180. Missing data = 19 (not entered by the surveyors).

Figure B - 29. Total number of fluoroscopy systems in the department per number of hospitals.

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR CARDIAC PROCEDURES

Table B – 47. Descriptive statistics for number of fluoroscopy systems in the department used for cardiac procedures.

Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
systems used								
for cardiac	1.65	167	1.70	0	0	1	2	7
procedures								

Reference: Facility Questionnaire (22b).

Number observations = 167. Missing data = 32 (not entered by the surveyors).

Table B – 48.	Frequency distribution for number of fluoroscopy systems in the
	department used for cardiac procedures.

Number of systems used for cardiac procedures	Frequency	Percent	Cumulative percent
0	52	31.1	31.1
1	43	25.7	56.8
2	31	18.6	75.4
3	15	9.0	84.4
4	15	9.0	93.4
5 +	11	6.6	100.0

Reference: Facility Questionnaire (22b).

Number observations = 167. Missing data = 32 (not entered by the surveyors).

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR CARDIAC PROCEDURES

Reference: Facility Questionnaire (22b). Number observations = 167. Missing data = 32 (not entered by the surveyors).

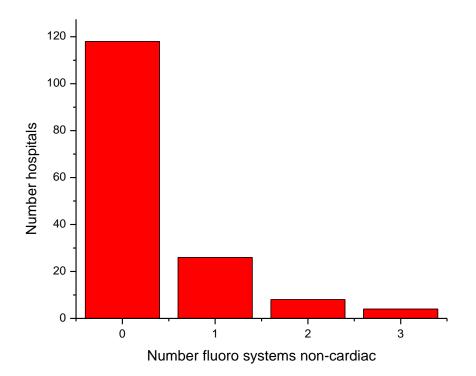
Figure B – 30. Number of fluoroscopy systems in the department used for cardiac procedures per number of hospitals.

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR NON-CARDIAC PROCEDURES

Table B – 49. Descriptive statistics for number of fluoroscopy systems in the department used for non-cardiac procedures.

Number of	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
systems used								
for non-	0.36	156	0.75	0	0	0	0	4
cardiac								
procedures								

Reference: Facility Questionnaire (22c). Number observations = 156. Missing data = 43 (not entered by the surveyors).


Table B – 50. Frequency distribution for number of fluoroscopy systems in the department used for non-cardiac procedures.

Number of systems used for non- cardiac procedures	Frequency	Percent	Cumulative percent
0	118	75.6	75.6
1	26	16.7	92.3
2	8	5.1	97.4
3 +	4	2.6	100.0

Reference: Facility Questionnaire (22c).

Number observations = 156. Missing data = 43 (not entered by the surveyors).

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR NON-CARDIAC PROCEDURES

Reference: Facility Questionnaire (22c). Number observations = 156. Missing data = 43 (not entered by the surveyors).

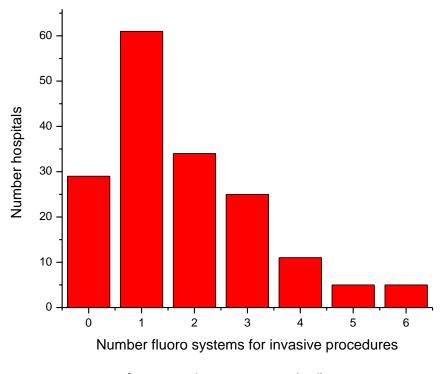
Figure B – 31. Number of fluoroscopy systems in the department used for non-cardiac procedures per number of hospitals.

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR INVASIVE PROCEDURES

Table B – 51. Descriptive statistics for number of fluoroscopy systems in the department used for cardiac and non-cardiac invasive procedures.

Reference: Facility Questionnaire (22d).

Number observations = 170. Missing data = 29 (not entered by the surveyors).


Table B – 52. Frequency distribution for number of fluoroscopy systems in the department used for cardiac and non-cardiac invasive procedures.

Number of systems	Frequency	Percent	Cumulative
used for invasive			percent
procedures			
0	29	17.1	17.1
1	61	35.9	53.0
2	34	20.0	73.0
3	25	14.7	87.7
4	11	6.5	94.2
5	5	2.9	97.1
6 +	5	2.9	100.0

Reference: Facility Questionnaire (22d).

Number observations = 170. Missing data = 29 (not entered by the surveyors).

TOTAL NUMBER OF FLUOROSCOPY SYSTEMS USED FOR INVASIVE PROCEDURES

Reference: Facility Questionnaire (22d). Number observations = 170. Missing data = 29 (not entered by the surveyors).

Figure B – 32. Number of fluoroscopy systems in the department used for cardiac and non-cardiac invasive procedures per number of hospitals.

NUMBER OF DIGITAL-RECEPTOR FLUOROSCOPY SYSTEMS USED FOR CARDIAC PROCEDURES

Table B – 53. Descriptive statistics for number of flat-panel (digital) image receptor fluoroscopy units used for cardiac procedures.

Number of	Mean	N	Std Dev	Min	Q25	Median	Q75	Max
digital- receptor systems used for cardiac procedures	1.91	166	1.67	0	1	1.5	3	9

Reference: Facility Questionnaire (23a). Number observations = 166. Missing data = 33 (not entered by the surveyors).

Table B – 54. Frequency distribution for number of flat-panel (digital) image receptor fluoroscopy units used for cardiac procedures.

Number of digital-receptor systems used for cardiac procedures	Frequency	Percent	Cumulative percent
0	26	15.7	15.7
1	57	34.3	50.0
2	39	23.5	73.5
3	22	13.3	86.8
4	10	6.0	92.8
5 +	12	7.2	100.0

Reference: Facility Questionnaire (23a).

Number observations = 166. Missing data = 33 (not entered by the surveyors).

NUMBER OF DIGITAL-RECEPTOR FLUOROSCOPY SYSTEMS USED FOR CARDIAC PROCEDURES

Reference: Facility Questionnaire (23a). Number observations = 166. Missing data = 33 (not entered by the surveyors).

Figure B – 33. Number of flat-panel (digital) image receptor fluoroscopy units used for cardiac procedures per number of hospitals.

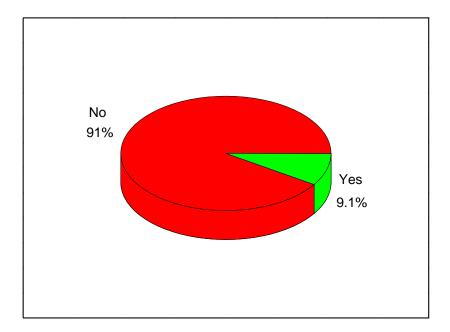
NUMBER OF CARDIAC FLUOROSCOPY UNITS WITH COMPUTED TOMOGRAPHY (CT) MODE OF OPERATION

Table B – 55. Descriptive statistics for number of fluoroscopy systems used for cardiac procedures with a CT mode of operation.

Systems with CT mode	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
mode	0.11	121	0.36	0	0	0	0	2

Reference: Facility Questionnaire (23b).

Number observations = 121. Missing data = 78 (not entered by the surveyors).


Table B – 56. Frequency distribution for number of fluoroscopy systems used for cardiac procedures with a CT mode of operation.

Systems with CT mode	Frequency	Percent	Cumulative percent
No	110	90.9	90.9
Yes	11	9.1	100.0

Reference: Facility Questionnaire (23b).

Number observations = 121. Missing data = 78 (not entered by the surveyors).

NUMBER OF CARDIAC FLUOROSCOPY UNITS WITH CT MODE OF OPERATION

Reference: Facility Questionnaire (23b). Number observations = 121. Missing data = 78 (not entered by the surveyors).

Figure B – 34. Percent of fluoroscopy systems used for cardiac procedures with a CT mode of operation.

NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH DOSE-AREA PRODUCT (DAP)/ AIR KERMA-AREA PRODUCT (KAP) DISPLAY

Table B – 57. Descriptive statistics for number of fluoroscopy units used for cardiac procedures with DAP/KAP display.

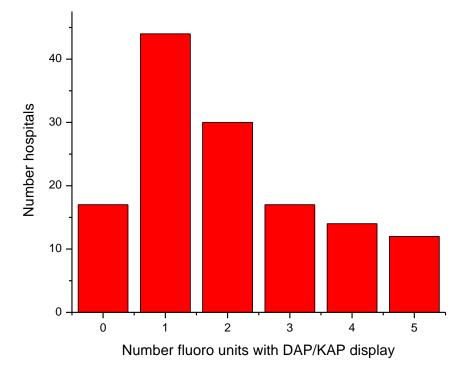
Systems with	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
DAP/KAP								
	2.13	134	1.78	0	1	2	3	9

Reference: Facility Questionnaire (23c).

Number observations = 134. Missing data = 65 (not entered by the surveyors).

DAP Dose-area product KAP Air kerma-area product

Table B – 58. Frequency distribution for number of fluoroscopy units used for cardiac procedures with DAP/KAP display.


Number systems with DAP/KAP display	Frequency	Percent	Cumulative percent
0	17	12.7	12.7
1	44	32.8	45.5
2	30	22.4	67.9
3	17	12.7	80.6
4	14	10.4	91.0
5 +	12	9.0	100.0

Reference: Facility Questionnaire (23c).

Number observations = 134. Missing data = 65 (not entered by the surveyors).

DAP Dose-area product KAP Air kerma-area product

NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH DAP/KAP DISPLAY

Reference: Facility Questionnaire (23c). Number observations = 134. Missing data = 65 (not entered by the surveyors).

> DAP Dose-area product KAP Air kerma-area product

Figure B – 35. Number of fluoroscopy units used for cardiac procedures with DAP/KAP display per number of hospitals.

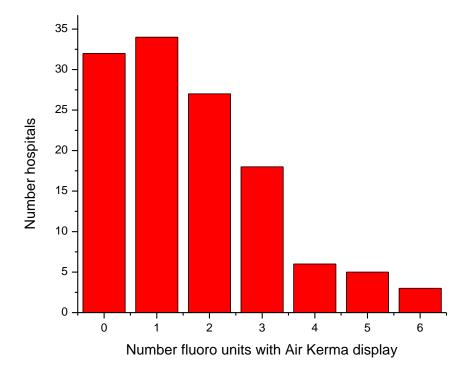
NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH AIR KERMA (AK) DISPLAY

Table B – 59. Descriptive statistics for number of fluoroscopy units used for cardiac procedures with air kerma display.

Systems with	Mean	Ν	Std Dev	Min	Q25	Median	Q75	Max
AK display								
	1.71	125	1.65	0	0	1	3	9

Reference: Facility Questionnaire (23d).

Number observations = 125. Missing data = 74 (not entered by the surveyors).


Table B – 60. Frequency distribution for number of fluoroscopy units used for cardiac procedures with air kerma display.

Number systems with AK	Frequency	Percent	Cumulative
display			percent
0	32	25.6	25.6
1	34	27.2	52.8
2	27	21.6	74.4
3	18	14.4	88.8
4	6	4.8	93.6
5	5	4.0	97.6
6+	3	2.4	100.0

Reference: Facility Questionnaire (23d).

Number observations = 125. Missing data = 74 (not entered by the surveyors).

NUMBER OF CARDIAC FLUOROSCOPY UNITS IN DEPARTMENT WITH AIR KERMA DISPLAY

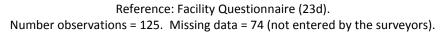


Figure B – 36. Number of fluoroscopy units used for cardiac procedures with air kerma display per number of hospitals.

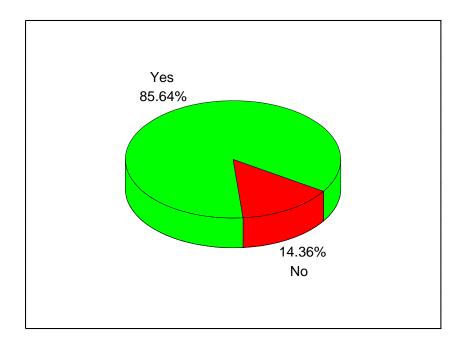

VALUES OF FLUOROSCOPY TIME RECORDED AND KEPT ON RECORD

Table B – 61. Frequency distribution for facilities recording values of cumulative fluoroscopy time.

Cumulative fluoroscopy time kept on record	Frequency	Percent	Cumulative percent
No	28	14.4	14.4
Yes	167	85.6	100.0

Reference: Facility Questionnaire (24a).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (24a). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 37. Percent recording values of cumulative fluoroscopy time.

RECORD OF FLUOROSCOPY TIME USED FOR PATIENT FOLLOW-UP

Not enough data available.

RECORD OF FLUOROSCOPY TIME USED FOR INTERNAL REPORTING

Not enough data available.

RECORD OF FLUOROSCOPY TIME USED FOR REPORTING WITH OUTSIDE AGENCY

Not enough data available.

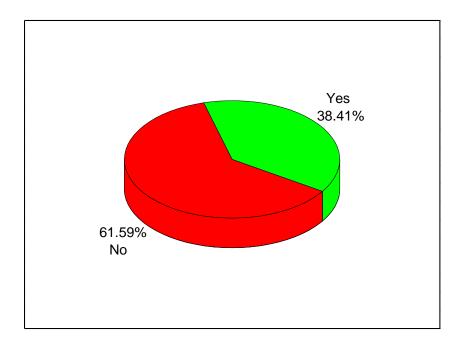

VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD

Table B – 62. Frequency distribution for facilities recording values of cumulative KAP.

Cumulative KAP recorded and kept	Frequency	Percent	Cumulative percent
No	93	61.6	61.6
Yes	58	38.4	100.0

Reference: Facility Questionnaire (24b).

Number observations = 151. Missing data = 48 (not entered by the surveyors).

Reference: Facility Questionnaire (24b). Number observations = 151. Missing data = 48 (not entered by the surveyors).

Figure B – 38. Percent recording and keeping values of cumulative KAP.

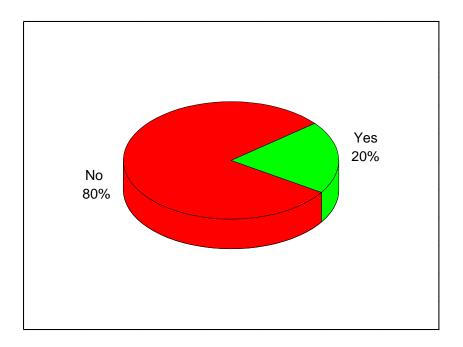

VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR PATIENT FOLLOW-UP

Table B – 63. Frequency distribution for recording values of cumulative KAP for patient follow-up.

KAP recorded for patient follow-up	Frequency	Percent	Cumulative percent
No	12	80.0	80.0
Yes	3	20.0	100.0

Reference: Facility Questionnaire (24b).

Number observations = 15. Missing data = 184 (not entered by the surveyors).

Reference: Facility Questionnaire (24b). Number observations = 15. Missing data = 184 (not entered by the surveyors).

Figure B – 39. Percent recording values of cumulative KAP for patient follow-up.

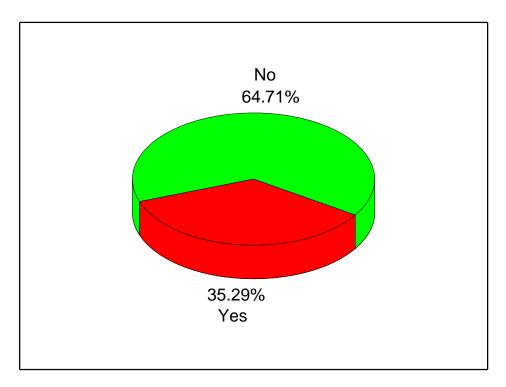

VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR INTERNAL REPORTING

Table B – 64. Frequency distribution for recording values of KAP for internal reporting.

KAP recorded for internal report	Frequency	Percent	Cumulative percent
No	11	64.7	64.7
Yes	6	35.3	100.0

Reference: Facility Questionnaire (24b).

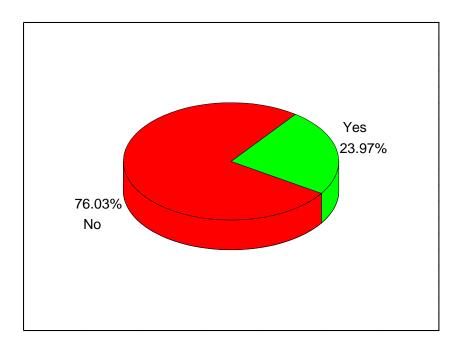
Number observations = 17. Missing data = 182 (not entered by the surveyors).

Reference: Facility Questionnaire (24b). Number observations = 17. Missing data = 182 (not entered by the surveyors).

Figure B - 40. Percent recording values of KAP for internal reporting.

VALUES OF AIR KERMA-AREA PRODUCT (KAP) RECORDED AND KEPT ON RECORD FOR OUTSIDE AGENCY REPORTING

Not enough data available.


VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD

Values of air kerma recorded	Frequency	Percent	Cumulative percent
No	111	76.0	76.0
Yes	35	24.0	100.0

Table B – 65. Frequency distribution for recording values of air kerma.

Reference: Facility Questionnaire (24c).

Number observations = 146. Missing data = 53 (not entered by the surveyors).

Reference: Facility Questionnaire (24c). Number observations = 146. Missing data = 53 (not entered by the surveyors).

Figure B – 41. Percent recording values of air kerma.

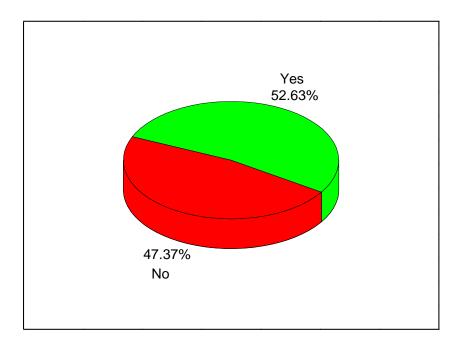

VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR PATIENT FOLLOW-UP

Table B – 66. Frequency distribution for recording values of cumulative air kerma for patient follow-up.

Air kerma recorded for patient follow-up	Frequency	Percent	Cumulative percent
No	9	47.4	47.4
Yes	10	52.6	100.0

Reference: Facility Questionnaire (24c).

Number observations = 19. Missing data = 180 (not entered by the surveyors).

Reference: Facility Questionnaire (24c). Number observations = 19. Missing data = 180 (not entered by the surveyors).

Figure B – 42. Percent recording values of cumulative air kerma for patient follow-up.

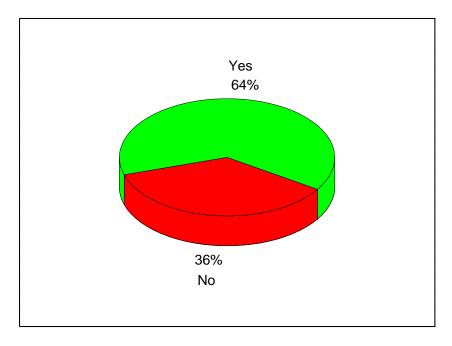

VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR INTERNAL REPORTING

Table B – 67. Frequency distribution for recording values of cumulative air kerma for internal reporting.

Air kerma recorded for internal report	Frequency	Percent	Cumulative percent
No	9	36.0	36.0
Yes	16	64.0	100.0

Reference: Facility Questionnaire (24c).

Number observations = 25. Missing data = 174 (not entered by the surveyors).

Reference: Facility Questionnaire (24c). Number observations = 25. Missing data = 174 (not entered by the surveyors).

Figure B – 43. Percent recording values of cumulative air kerma for internal reporting.

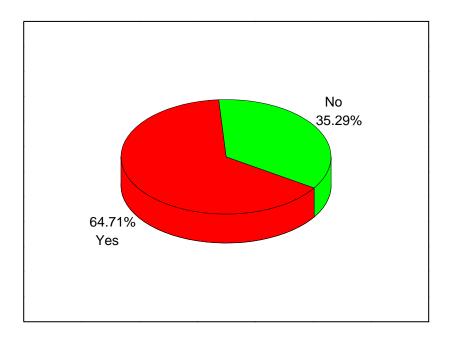
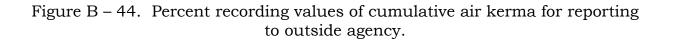

VALUES OF AIR KERMA RECORDED AND KEPT ON RECORD FOR REPORTING TO OUTSIDE AGENCY

Table B – 68. Frequency distribution for recording values of cumulative air kerma for reporting to outside agency.


Air kerma recorded and kept for reporting to outside agency	Frequency	Percent	Cumulative percent
No	11	64.7	64.7
Yes	6	35.3	100.0

Reference: Facility Questionnaire (24c).

Number observations = 17. Missing data = 182 (not entered by the surveyors).

Reference: Facility Questionnaire (24c). Number observations = 17. Missing data = 182 (not entered by the surveyors).

OTHER VALUES RECORDED AND KEPT ON RECORD

Not enough data available.

OTHER VALUES RECORDED AND KEPT ON RECORD FOR PATIENT FOLLOW-UP

Not enough data available.

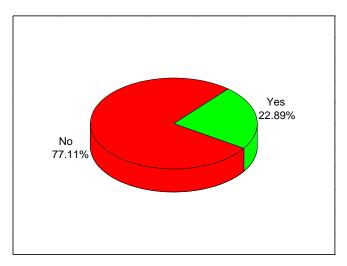
OTHER VALUES RECORDED AND KEPT ON RECORD FOR INTERNAL REPORTING

Not enough data available.

OTHER VALUES RECORDED AND KEPT ON RECORD FOR OUTSIDE AGENCY REPORTING

Not enough data available.

PROCEDURES IN PLACE TO MINIMIZE DOSE FOR EXTENSIVE IMAGING (ADULT PATIENTS)


Table B – 69. Frequency distribution for having procedures in place to minimize dose for extensive imaging of adult patients.

Procedures to minimize dose for extensive imaging of adult patients	Frequency	Percent	Cumulative percent
No	128	77.1	77.1
Yes	38	22.9	100.0

Reference: Facility Questionnaire (25a).

Number observations = 166. Missing data = 33 (not entered by the surveyors).

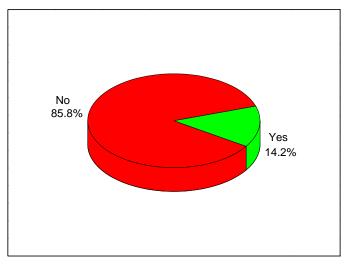
Question refers to dose-reduction procedures for adult patients undergoing a procedure requiring extensive imaging.

Reference: Facility Questionnaire (25a). Number observations = 166. Missing data = 33 (not entered by the surveyors).

Question refers to dose-reduction procedures for adult patients undergoing a procedure requiring extensive imaging.

Figure B – 45. Percent having procedures in place to minimize dose for extensive imaging of adult patients.

PROCEDURES IN PLACE TO MINIMIZE DOSE FOR ADULT PATIENTS WITH PREVIOUS TREATMENT


Table B – 70. Frequency distribution for having procedures in place to minimize radiation dose for adult patients with previous treatment.

Procedures to	Frequency	Percent	Cumulative
minimize dose for			percent
adult patients with			
previous treatment			
No	139	85.8	85.8
Yes	23	14.2	100.0

Reference: Facility Quest (25b).

Number observations = 162. Missing data = 37 (not entered by the surveyors).

Question refers to dose-reduction procedures for adult patients who have had a previous interventional fluoroscopic treatment session within the past six months.

Reference: Facility Quest (25b). Number observations = 162. Missing data = 37 (not entered by the surveyors).

Question refers to dose-reduction procedures for adult patients who have had a previous interventional fluoroscopic treatment session within the past six months.

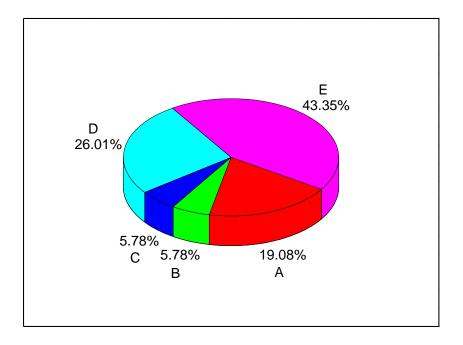
Figure B – 46. Percent having procedures in place to minimize radiation dose for adult patients with previous treatment.

PROCEDURES IN PLACE TO MINIMIZE DOSE FOR PEDIATRIC PATIENTS

Not enough data available.

DEPARTMENT PROVIDES INFORMATION ON POSSIBLE RADIATION INJURY

Table B – 71. Frequency distribution for providing information on the possible radiation injury.


Information on possible radiation injury provided	Frequency	Percent	Cumulative percent
A	33	19.1	19.1
В	10	5.8	24.9
C	10	5.8	30.6
D	45	26.0	56.7
E	75	43.3	100.0

Reference: Facility Questionnaire (27).

Number observations = 173. Missing data = 26 (not entered by the surveyors).

A = Only prior to the exam
B = Only following the exam
C = Prior to and following the exam
D = Varies or not sure
E = Never

DEPARTMENT PROVIDES INFORMATION ON POSSIBLE RADIATION INJURY

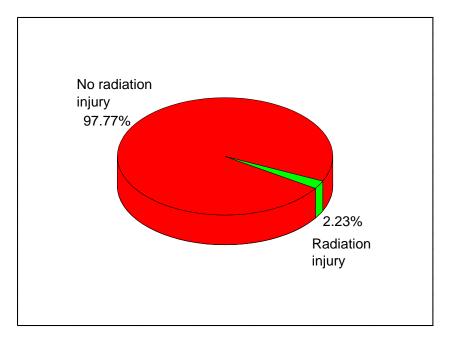
Reference: Facility Questionnaire (27). Number observations = 173. Missing data = 26 (not entered by the surveyors).

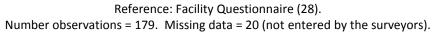
> A = Only prior to the exam B = Only following the exam C = Prior to and following the exam D = Varies or not sure E = Never

Figure B – 47. Percent providing information on possible radiation injury.

NUMBER OF PATIENTS WITH CONFIRMED RADIATION INJURY DURING PAST THREE YEARS

Table B – 72. Frequency distribution for number of patients with a confirmed radiation injury during past 36 months.


Patients with confirmed radiation injury	Frequency	Percent	Cumulative percent
A	175	97.8	97.8
В	2	1.1	98.9
С	1	0.6	99.5
D	1	0.6	100.1


Reference: Facility Questionnaire (28).

Number observations = 179. Missing data = 20 (not entered by the surveyors).

No radiation injury: A = Zero Radiation injury (B, C, D and E combined): B = 1 D = 5-10 E = more than 10

NUMBER OF PATIENTS WITH CONFIRMED RADIATION INJURY DURING PAST THREE YEARS

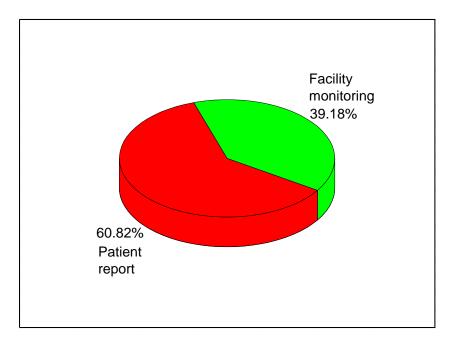
No radiation injury: A = Zero Radiation injury (B, C, D and E combined): B = 1 D = 5-10 E = more than 10

Figure B – 48. Percent of patients with a confirmed radiation injury during past 36 months.

POST-EXAM PATIENT MONITORING FOR RADIATION INJURY

Table B – 73. Frequency distribution for facility's standard protocol for postexam patient monitoring regarding potential for radiation injury.

Patient monitoring for radiation injury	Frequency	Percent	Cumulative percent
A	104	60.8	60.8
В	13	7.6	68.4
C	42	24.6	93.0
D	12	7.0	100.0


Reference: Facility Questionnaire (29).

Number observations = 171. Missing data = 28 (not entered by the surveyors).

A = Rely on patient to report any condition.B = Facility follows-up with all patients at specified time intervals.C = Facility dose threshold value to determine if follow-up is necessary.

D = Other.

POST-EXAM PATIENT MONITORING FOR RADIATION INJURY

Reference: Facility Questionnaire (29). Number observations = 171. Missing data = 28 (not entered by the surveyors).

A = Rely on patient to report any condition.
 B = Facility follows-up with all patients at specified time intervals.
 C = Facility dose threshold value to determine if follow-up is necessary.
 D = Other.

Facility monitoring frequency on the figure is cases B, C and D combined.

Figure B – 49. Facility's standard protocols for post-exam patient monitoring regarding potential for radiation injury by percent.

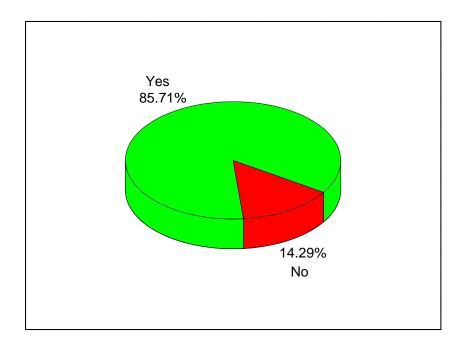

DOSE ESTIMATION PERFORMED FOLLOWING RADIATION INJURY

Table B – 74. Frequency distribution for performing radiation dose estimation as part of diagnosis of a possible radiation injury.

Dose estimation following injury	Frequency	Percent	Cumulative percent
N	20	14.3	14.3
Y	120	85.7	100.0

Reference: Facility Questionnaire (30).

Number observations = 140. Missing data = 59 (not entered by the surveyors).

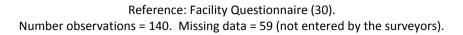


Figure B – 50. Percent performing radiation dose estimation as part of diagnosis of a possible radiation injury.

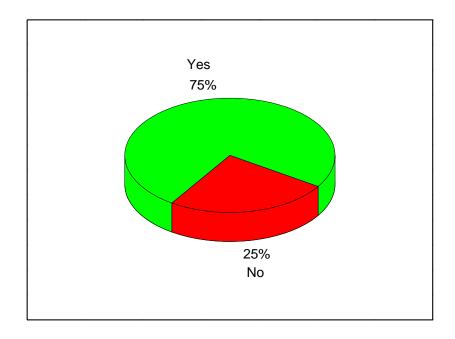

TREATING PHYSICIAN INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 75. Frequency distribution for involving treating physician in post-exam patient care following possible radiation injury.

Treating physician involved	Frequency	Percent	Cumulative percent
N	49	25.1	25.1
Y	146	74.9	100.0

Reference: Facility Questionnaire (31a).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31a). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 51. Percent involving treating physician in post-exam patient care following possible radiation injury.

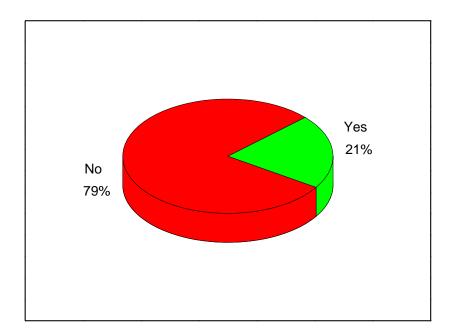

NURSE OR PHYSICIAN ASSISTANT INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 76. Frequency distribution for involving a nurse or physician assistant in post-exam patient care following possible radiation injury.

Nurse or physician assistant involved	Frequency	Percent	Cumulative percent
N	154	79.0	79.0
Y	41	21.0	100.0

Reference: Facility Questionnaire (31b).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31b). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 52. Percent involving a nurse or physician assistant in post-exam patient care following possible radiation injury.

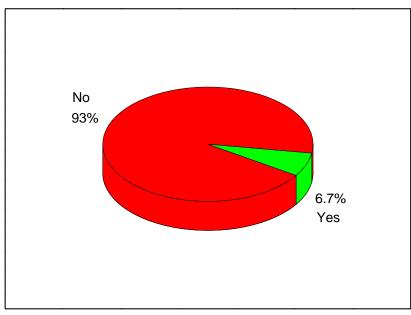

DERMATOLOGIST INVOLVED IN POST-EXAM PATIENT CARE REGRADING RADIATION INJURY

Table B – 77. Frequency distribution for involving a dermatologist in postexam patient care following possible radiation injury.

Dermatologist involved	Frequency	Percent	Cumulative percent
N	182	93.3	93.3
Y	13	6.7	100.0

Reference: Facility Questionnaire (31c).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31c). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 53. Percent involving a dermatologist in post-exam patient care following possible radiation injury.

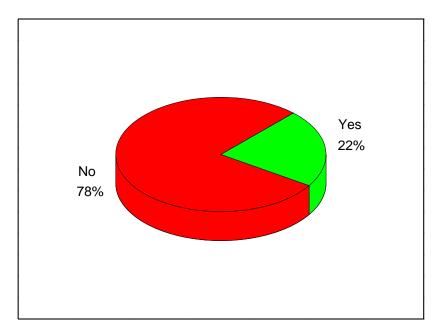

PHYSICIAN MEDICAL DIRECTOR INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 78. Frequency distribution for involving the physician medical director involved in post-exam patient care following possible radiation injury.

Physician medical director involved	Frequency	Percent	Cumulative percent
N	152	78.0	78.0
Y	43	22.0	100.0

Reference: Facility Questionnaire (31d).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31d). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 54. Percent involving the physician medical director in post-exam patient care following possible radiation injury.

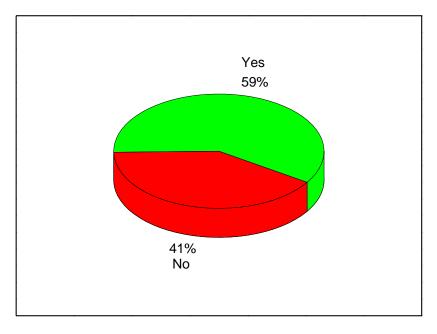

RADIATION SAFETY OFFICER (RSO) INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 79. Frequency distribution for involving the RSO in post-exam patient care following possible radiation injury.

RSO involved	Frequency	Percent	Cumulative percent
N	79	40.5	40.5
Y	116	59.5	100.0

Reference: Facility Questionnaire (31e).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31e). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 55. Percent involving the RSO in post-exam patient care following possible radiation injury.


PATIENT'S PRIMARY PHYSICIAN INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 80. Frequency distribution for involving the patient's primary physician in post-exam patient care following possible radiation injury.

Primary physician involved	Frequency	Percent	Cumulative percent
N	124	63.6	63.6
Y	71	36.4	100.0

Reference: Facility Questionnaire (31f).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31f). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 56. Percent involving the patient's primary physician in post-exam patient care following possible radiation injury.

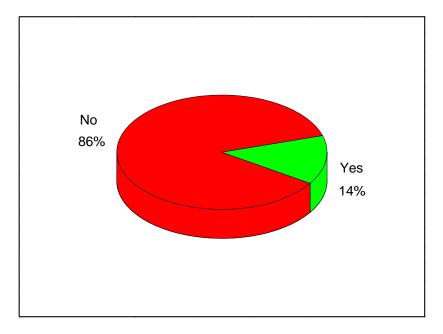

OTHER PERSONNEL INVOLVED IN POST-EXAM PATIENT CARE REGARDING RADIATION INJURY

Table B – 81. Frequency distribution for involving other personnel in postexam patient care following possible radiation injury.

Other personnel involved	Frequency	Percent	Cumulative percent
N	168	86.2	86.2
Y	27	13.8	100.0

Reference: Facility Questionnaire (31g).

Number observations = 195. Missing data = 4 (not entered by the surveyors).

Reference: Facility Questionnaire (31g). Number observations = 195. Missing data = 4 (not entered by the surveyors).

Figure B – 57. Percent involving other personnel in post-exam patient care following possible radiation injury.

FACILITY RESPONSE TO 2006 JOINT COMMISSION (JC) SENTINEL EVENT REGARDING CUMULATIVE DOSES EXCEEDING 15 Gy

In 2006, the Joint Commission (JC) added as a reviewable sentinel event the occurrence of fluoroscopy cumulative dose exceeding 1500 rad (15 Gy) to a single field.

In the table and chart following, response choices are:

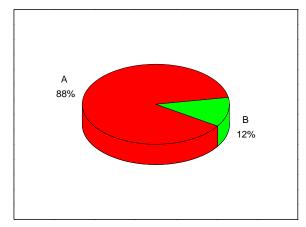

- A = "We believe our current processes/x-ray equipment allows us to meet Joint Commission (JC) expectations."
- B = "We have made changes within our department in order to better meet JC expectations."

Table B – 82.	Frequency distribution for facility response to Joint
	Commission's sentinel event of 2006.

Sentinel response	Frequency	Percent	Cumulative percent
A	126	88.1	88.1
В	17	11.9	100.0

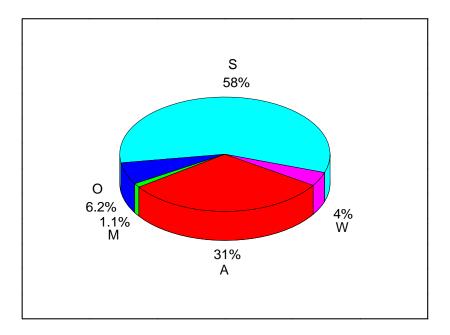
Reference: Facility Questionnaire (32).

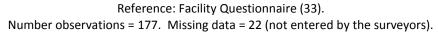
Number observations = 143. Missing data = 56 (not entered by the surveyors).

Reference: Facility Questionnaire (32). Number observations = 143. Missing data = 56 (not entered by the surveyors).

Figure B – 58. Type of facility responses to Joint Commission's sentinel event of 2006 by percent.

HOW OFTEN PREVENTIVE MAINTENANCE IS PERFORMED ON FLUOROSCOPIC EQUIPMENT


Table B – 83.	Frequency distribution for how often routine preventive
mainter	nance is performed on the fluoroscopic equipment.


Preventive maintenance	Frequency	Percent	Cumulative percent
A	55	31.1	31.1
М	2	1.1	32.2
0	11	6.2	38.4
S	102	57.6	96.0
W	7	4.0	100.0

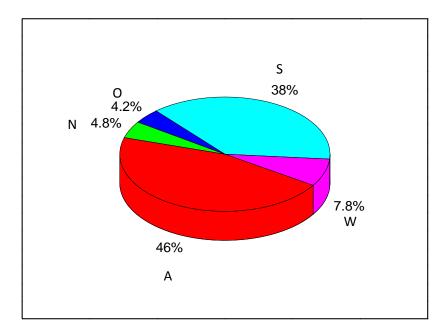
Reference: Facility Questionnaire (33).

Number observations = 177. Missing data = 22 (not entered by the surveyors).

HOW OFTEN PREVENTIVE MAINTENANCE IS PERFORMED ON FLUOROSCOPIC EQUIPMENT

- A = Annually M = Monthly O = Other S = Semi-annually W = When needed N = Never
- Figure B 59. How often routine preventive maintenance is performed on the fluoroscopic equipment by percent.

HOW OFTEN DOSE-DISPLAY EQUIPMENT IS CALIBRATED


Table B – 84. Frequency distribution for how often dose-display equipment is calibrated.

Dose-display equipment calibrated	Frequency	Percent	Cumulative percent
A	76	45.5	45.5
N	8	4.8	50.3
0	7	4.2	54.5
S	63	37.7	92.2
W	13	7.8	100.0

Reference: Facility Questionnaire (34).

Number observations = 167. Missing data = 32 (not entered by the surveyors).

HOW OFTEN DOSE-DISPLAY EQUIPMENT IS CALIBRATED

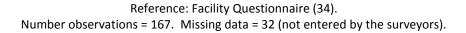
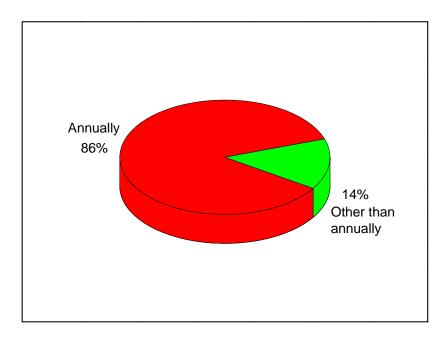
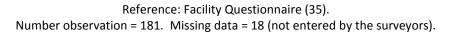


Figure B – 60. How often dose-display equipment is calibrated by percent.

HOW OFTEN A MEDICAL PHYSICS SURVEY IS PERFORMED ON THE FLUOROSCOPY UNIT THAT WAS EVALUATED AS PART OF THE NEXT SURVEY


Table B – 85. Frequency distribution for how often a medical physicist survey is performed on the fluoroscopy equipment that was evaluated as part of the NEXT survey.


Medical physics	Frequency	Percent	Cumulative
survey			percent
A	155	85.6	85.6
М	1	0.6	86.2
N	1	0.6	86.8
0	2	1.1	87.9
S	18	9.9	97.8
W	4	2.2	100.0

Reference: Facility Questionnaire (35).

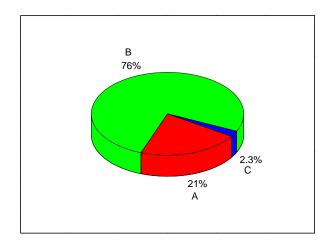
Number observation = 181. Missing data = 18 (not entered by the surveyors).

HOW OFTEN A MEDICAL PHYSICS SURVEY IS PERFORMED ON THE FLUOROSCOPY UNIT THAT WAS EVALUATED AS PART OF THE NEXT SURVEY

A = Annually M = Monthly O = Other S = Semi-annually W = When needed N = Never

Figure B – 61. Frequency of performing a medical physicist survey on the fluoroscopy equipment that was evaluated as part of the NEXT survey by percent.

WHO PERFORMS MEDICAL PHYSICS SURVEYS ON FLUOROSCOPY EQUIPMENT


Table B – 86. Frequency distribution for who performs the medical physics surveys on the fluoroscopy equipment.

Frequency	Percent	Cumulative
		percent
38	21.5	21.5
135	76.3	97.8
4	2.2	100.0
	38	38 21.5 135 76.3

Reference: Facility Questionnaire (36).

Number observations = 177. Missing data = 22 (not entered by the surveyors).

A = In-house medical physics staff B = Contracted medical physics services C = Other

Reference: Facility Questionnaire (36). Number observations = 177. Missing data = 22 (not entered by the surveyors).

A = In-house medical physics staff B = Contracted medical physics services C = Other

Figure B – 62. Who performs the medical physics surveys on the fluoroscopy equipment by percent.

APPENDIX C - DATA FROM CLINICAL PROCEDURE FORMS

CLINICAL DATA ON CARDIAC CATHETERIZATION PROCEDURES

The surveyed facilities were asked to return clinical data on cardiac catheterization procedures from patients treated within a one-week interval.

Data on total fluoroscopy time, number of digital acquisitions/cine runs, air kerma-area product (KAP) and air kerma (AK) were collected for the following clinical procedures:

- cardiac catheterization diagnostic only (for example, coronary artery angiography);
- coronary intervention (for example, coronary artery angioplasty and stent insertion);
- combined diagnostic coronary angiogram and coronary artery intervention;
- other cardiac-intervention only procedures [for example, atrial septal defects (ASD), patent foramen ovale (PFO), valvuloplasties];
- other non-cardiac only procedure; and
- combined cardiac and non-cardiac procedure.

However, after data filtering as part of the final analysis, only the first three procedures listed above provided enough observations for a significant statistical analysis.

These are, as keyed to the tables in Appendix C:

- A = Diagnostic catheterization
- B = Coronary intervention procedures
- C = Combined

SUMMARY OF CLINICAL DATA

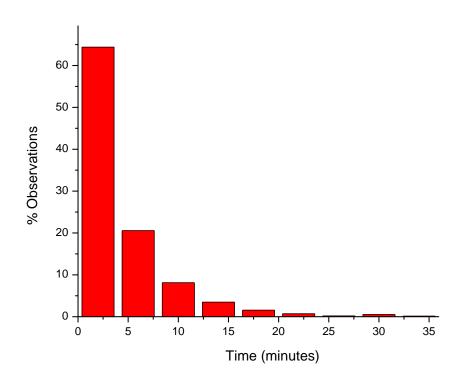
Table C – 1. Descriptive statistics and summary of clinical data [time, dose-
area product (DAP), air kerma (AK) and cine runs)] sorted by procedure type A,
B and C.

NE.	XT 2008 CLINICAL	MEAN	N	STD DEV	QUANTILES						
	DATA				 Q5	Q10	Q25	Q50	Q75	Q90	Q95
	Time (min)	4.69	1528	5.75	1.0	1.2	1.8	2.9	5.5	10.2	13.9
Α	DAP (Gy*cm2)	73.04	1185	169.65	6	14	29	49	83	129	174
	AK (mGy)	1051.0	900	2101.5	193	280.5	450.5	728.5	1173	1861	2345
	# Cine Runs	10.42	1461	3.99	6	7	8	10	12	15	17
	Time (min)	13.65	153	10.44	2.1	3.6	6.0	10.8	17.7	27.2	35.25
В	DAP (Gy*cm2)	142.65	133	150.13	22	32	59	115	192	271	327
	AK (mGy)	2219.25	106	1517.12	534	693	970	1881	3119	4398	4853
	# Cine Runs	19.65	142	10.22	6	8	13	17.5	25	34	39
	Time (min)	14.15	569	9.77	3.6	5.0	7.3	11.5	18.1	27.1	33.2
С	DAP (Gy*cm2)	155.52	471	241.61	12	24	67	114	185	301	368
	AK (mGy)	2405.63	333	1675.05	619	802	1212	1994	2963	4887	5964
	# Cine Runs	23.53	556	10.71	11	13	16	21	28.5	37	43

Procedure type:

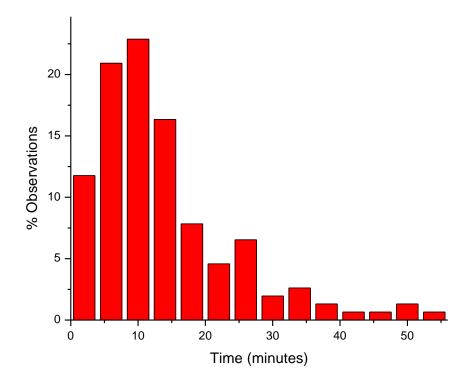
A = Diagnostic catheterization

B = Coronary intervention procedures


C = Combined

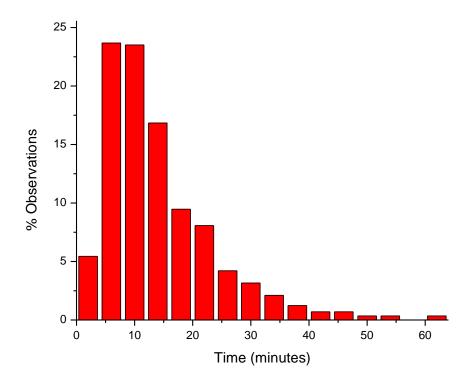
Time (in minutes) is the total fluoroscopy time. DAP stands for dose-area product; the unit is Gy·cm². AK stands for air kerma; the unit is mGy. #Cine runs are the total number of cine runs obtained during the procedure. Note: Some manufacturers of fluoroscopy equipment might use a different location of the reference point for reading of AK value.

Table C – 2.	Distribution of range of total fluoroscopy time for procedures A, B
	and C.


Fluoroscopy		Procedure									
Time	Proce	dure A	Proce	dure B	Proce	Procedure C					
(min)	Diagnostic	c (n=1623)	PCI (n	=159)	Combined	d (n=621)					
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %					
0-4	65.0	65.0	10.1	10.1	5.3	5.3					
4-8	20.5	85.5	20.1	30.2	23.7	29.0					
8-12	7.9	93.4	24.5	54.7	24.0	53.0					
12-16	3.4	96.8	17.0	71.7	16.6	69.6					
16-20	1.5	98.3	6.9	78.6	8.9	78.5					
20-24	0.7	99.0	5.0	83.6	8.1	86.6					
24-28	0.2	99.2	6.3	89.9	4.2	90.8					
28-32	0.4	99.6	1.9	91.8	3.4	94.2					
32-36	0.2	99.8	3.1	94.9	2.1	96.3					
36-40	0.1	99.9	1.3	96.2	1.4	97.7					
40-44	0	99.9	0.6	96.8	0.8	98.5					
44-48	0	99.9	0.6	97.4	0.6	99.1					
48-52	0	99.9	1.3	98.7	0.3	99.4					
52-56	0.1	100.0	0.6	99.3	0.3	99.7					
56-60	0	100.0	0	99.3	0	99.7					
60 +	0	100.0	0.6	99.9	0.3	100.0					


Procedure type: A = Diagnostic catheterization; B = Coronary intervention procedures; C = Combined

The total fluoroscopy time is the total length of time that fluoroscopy is in use. It does not include cineradiography time. Procedure A = Diagnostic catheterization


Figure C – 1. Distribution of total fluoroscopy time for cardiac catheterization diagnostic procedures (Procedure A) by percent of observations.

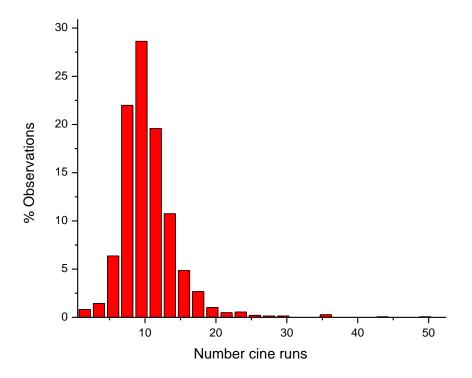
Procedure B = Coronary intervention procedures

Figure C – 2. Distribution of total fluoroscopy time for coronary intervention procedures (Procedure B) by percent of observations.

The total fluoroscopy time is the total length of time that fluoroscopy is in use. It does not include cineradiography time. Procedure C = Combined

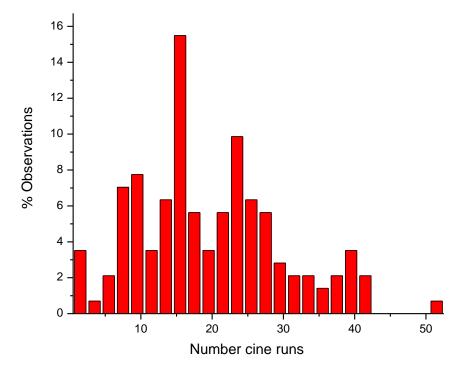
Figure C – 3. Distribution of total fluoroscopy time for combined cardiac diagnostic and coronary intervention procedures (Procedure C) by percent of observations.

Number cine			Pro	ocedure		
runs	Procedure A Procedure B Diagnostic (n=1561) PCI (n=147)		Diagnostic Combined(
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %
0-3	1.8	1.8	0	0	0.3	0.3
4-6	7.1	8.9	2.7	2.7	0.2	0.5
7-9	36.5	45.4	10.2	12.9	1.0	1.5
10-12	33.3	78.7	7.5	20.4	7.4	8.9
13-15	14.0	92.7	14.3	34.7	10.7	19.6
16-18	4.5	97.2	15.0	49.7	17.2	36.8
19-21	1.3	98.5	8.2	57.9	12.9	49.7
22-24	0.7	99.2	10.9	68.8	13.1	62.8
25-27	0.3	99.5	9.5	78.3	9.6	72.4
28-30	0.2	99.7	7.5	85.8	6.4	78.8
31-33	0	99.7	2.7	88.5	4.5	83.3
34-36	0.1	99.8	2.7	91.2	5.6	88.9
37-39	0	99.8	4.1	95.3	2.8	91.7
40-42	0	99.8	3.4	98.7	2.8	94.5
43-45	0.1	99.9	0	98.7	1.5	96.0
46-48	0	99.9	0	98.7	1.0	97.0


Table C – 3. Number of digital acquisitions (cine runs) for procedures A, B and C.

Number cine		Procedure							
runs	E	rocedure A Diagnostic [n=1561)		Procedure B PCI (n=147)		Procedure C Combined(n=605)			
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %			

Table C – 3. Number of digital acquisitions (cine runs) for procedures A, B and C. – Continued


49-51	0.1	100.0	0	98.7	0.7	98.4
52-54	0	100.0	0	98.7	0.3	98.7
55-57	0	100.0	0	98.7	0.3	99.0
58-60	0	100.0	1.4	100.1	0.8	99.8
61 +	0	100.0	0	100.1	0.8	100.6

Procedure type: A = Diagnostic catheterization; B = Coronary intervention procedures; C = Combined

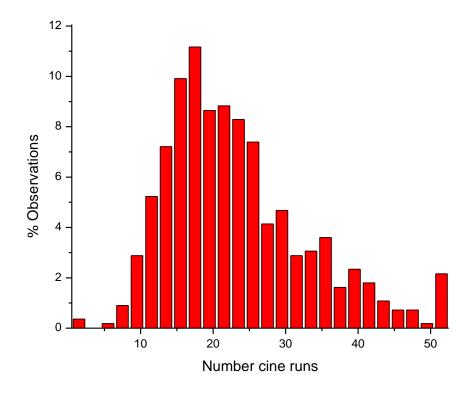

Procedure A = Diagnostic catheterization

Figure C – 4. Number of cine runs for cardiac catheterization diagnostic procedures (Procedure A) by percent of observations.

Procedure B = Coronary intervention procedures

Figure C – 5. Number of cine runs for coronary intervention procedures (Procedure B) by percent of observations.

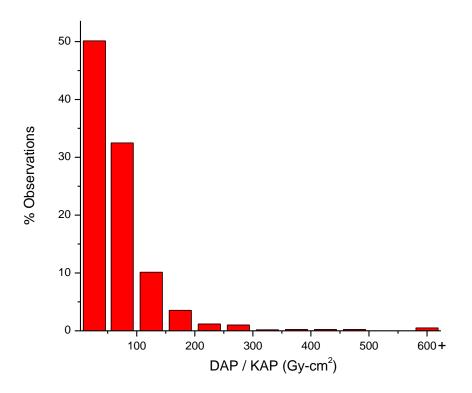
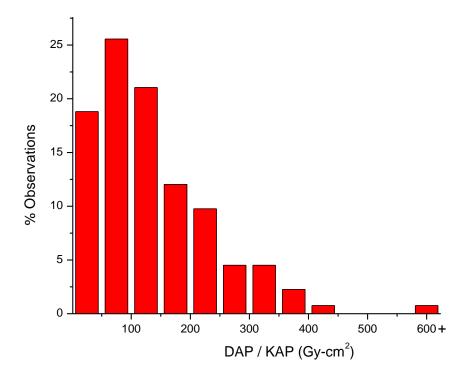

Procedure C = Combined

Figure C – 6. Distribution of number cine runs for combined cardiac diagnostic and coronary intervention procedures (Procedure C) by percent of observations.

КАР	Procedure								
(Gy*cm2)	Procec Diagno	lure A ostic(n=1326)		ocedure B CI (n=144)	Procedure C Combined (n=528)				
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %			
0-49	51.2	51.2	17.4	17.4	15.3	15.3			
50-99	32.2	83.4	25.7	43.1	24.2	39.5			
100-149	9.9	93.3	22.9	66.0	22.7	62.2			
150-199	3.5	96.8	11.8	77.8	12.9	75.:			
200-249	1.3	98.1	9.0	86.8	8.3	83.4			
250-299	0.9	99.0	4.2	91.0	5.3	88.			
300-349	0.2	99.2	4.9	95.9	4.2	92.			
350-399	0.2	99.4	2.1	98.0	2.5	95.			
400-449	0.2	99.6	0.7	98.7	1.5	96.			
450-499	0.3	99.9	0.7	99.4	0.6	97.			
500-549	0	99.9	0	99.4	0.6	98.			
550-599	0	99.9	0	99.4	0.4	98.			
600-649	0	99.9	0	99.4	0.4	98.			
649-699	0.1	100.0	0	99.4	0.4	99.			
700+	0.2	100.2	0.7	100.1	0.8	100.			


Table C – 4. KAP values for Procedures A, B and C.

Procedure type: A = Diagnostic catheterization; B = Coronary intervention procedures; C = Combined

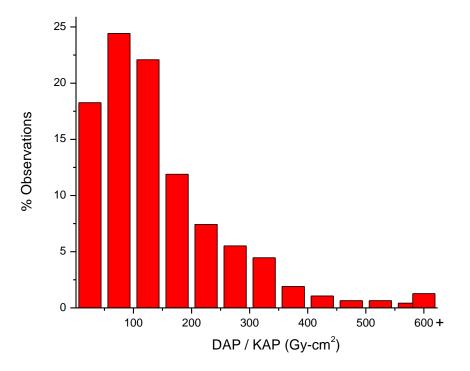

Procedure A = Diagnostic catheterization

Figure C – 7. KAP distribution for cardiac catheterization diagnostic procedures (Procedure A) by percent of observations.

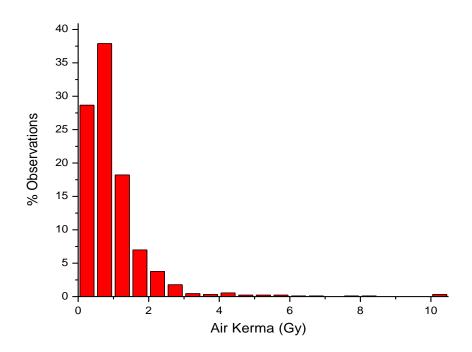
Procedure type: B = Coronary intervention procedures

Figure C – 8. KAP distribution for coronary intervention procedures (Procedure B) by percent of observations.

Procedure C = Combined

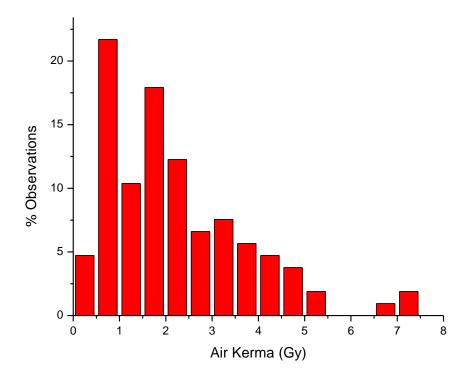
Figure C – 9. Distribution of KAP values for combined cardiac diagnostic and coronary intervention procedures (Procedure C) by percent of observations.

Air kerma	Procedure								
(Gy)	Procec Diagno	dure A ostic (n=1038)		rocedure B CI (n=117)	Procedure C Combined (n=390)				
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %			
0-0.5	29.8	29.8	5.1	5.1	3.1	3.1			
0.5-1.0	36.7	66.5	20.5	25.6	15.1	18.2			
1.0-1.5	17.6	84.1	12.0	37.6	15.6	33.8			
1.5-2.0	6.6	90.7	17.9	55.5	17.2	51.0			
2.0-2.5	4.2	94.9	12.0	67.5	13.8	64.8			
2.5-3.0	1.6	96.5	6.0	73.5	10.3	75.1			
3.0-3.5	0.7	97.2	6.8	80.3	6.4	81.5			
3.5-4.0	0.4	97.6	5.1	85.4	3.6	85.1			
4.0-4.5	0.5	98.1	4.3	89.7	2.8	87.9			
4.5-5.0	0.2	98.3	3.4	93.1	2.3	90.2			
5.0-5.5	0.2	98.5	1.7	94.8	1.5	91.7			
5.5-6.0	0.2	98.7	0	94.8	2.3	94.0			
6.0-6.5	0.2	98.9	0.9	95.7	2.8	96.8			
6.5-7.0	0.1	99.0	0.9	96.6	0.5	97.3			
7.0-7.5	0	99.0	1.7	98.3	0.3	97.6			
7.5-8.0	0.1	99.1	0	98.3	0.5	98.1			
8.0-8.5	0.1	99.1	0	98.3	0.3	98.4			


Table C – 5. Air kerma values for procedures A, B and C.

Air kerma	Procedure							
(Gy)	Gy) Procedure A Diagnostic (n=1038)		Procedure B PCI (n=117)		Procedure C Combined (n=390)			
Range	%	Cumulative %	%	Cumulative %	%	Cumulative %		

Table C – 5. Air kerma values for procedures A, B and C. – Continued


8.5-9.0	0	99.1	0	98.3	0.3	98.7
9.0-9.5	0	99.1	0	98.3	0.3	99.0
9.5-10.0	0	99.1	0	98.3	0	99.0
10 +	0.8	99.9	1.7	100.0	1.0	100.0

Procedure type: A = Diagnostic catheterization; B = Coronary intervention procedures; C = Combined

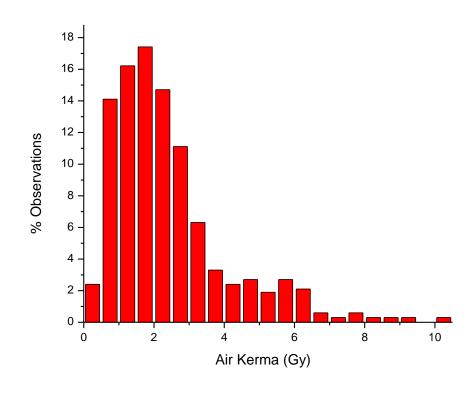

Procedure A = Diagnostic catheterization

Figure C - 10. Air kerma distribution for cardiac catheterization diagnostic procedures (Procedure A) by percent of observations.

Procedure B = Coronary intervention procedures

Figure C – 11. Air kerma distribution for coronary intervention procedures (Procedure B) by percent of observations.

Procedure C = Combined

Figure C – 12. Distribution of air kerma values for combined cardiac diagnostic and coronary intervention procedures (Procedure C) by percent of observations.